New developments in the theory of absolutely minimal Lipschitz extensions

Matthew J. Hirn

Department of Mathematics
Yale University

December 3, 2012

Cornell University
Analysis Seminar
New developments in the theory of absolutely minimal Lipschitz extensions

Collaborators

- Joint work with Erwan Le Gruyer, Institut National des Sciences Appliquées (INSA) de Rennes and Institut de Recherche Mathématique de Rennes (IRMAR).
Overview

1. History of Absolutely Minimal Lipschitz Extensions
 - Extension of Functions
 - Locally Best Extensions
 - Past and Present Results

2. Quasi Absolutely Minimal Lipschitz Extensions
 - Generalized Lipschitz Extensions
 - Existence of Quasi-AMLEs
 - Sketch of Proof
Overview

1 History of Absolutely Minimal Lipschitz Extensions
 - Extension of Functions
 - Locally Best Extensions
 - Past and Present Results

2 Quasi Absolutely Minimal Lipschitz Extensions
The Broad View

- Let $\mathcal{F}(X, Z)$ be some space of functions mapping the set X to the set Z that is endowed with a norm or seminorm $\| \cdot \|$.
- Let $E \subset X$ and $f : E \to Z$.

Question 1: Can one extend f to a function $F \in \mathcal{F}(X, Z)$? That is, can one find an $F : X \to Z$ such that
 - $F(x) = f(x)$ for all $x \in E$.
 - $F \in \mathcal{F}(X, Z)$ with $\|F\| < \infty$.

Question 2: If we can extend f, how small can we make $\|F\|$? Is it possible to find a minimal extension $F \in \mathcal{F}(X, Z)$ such that

$$\|F\| = \inf \left\{ \|\tilde{F}\| : \tilde{F}|_E = f, \tilde{F} \in \mathcal{F}(X, Z) \right\}.$$

Question 3: If a minimal extension exists, is it unique? If it is not unique, what is the “best” minimal extension?
Lipschitz Functions

Notation throughout the talk:
- (X, d_X) and (Z, d_Z) are metric spaces.
- $E \subset X$ is closed.
- $f : E \rightarrow Z$ is a function we wish to extend.
- $g : D \rightarrow Z$, $D \subset X$, is a generic function.

Lipschitz Constant

Let $g : X \rightarrow Z$. The **Lipschitz constant** of g over the set $D \subset X$ is defined as:

\[
\text{Lip}(g; D) \triangleq \sup_{x, y \in D \atop x \neq y} \frac{d_Z(g(x), g(y))}{d_X(x, y)}.
\]
New developments in the theory of absolutely minimal Lipschitz extensions

History of Absolutely Minimal Lipschitz Extensions

Extension of Functions

Isometric Lipschitz Extensions

Isometric Extension Property

Two metric spaces \((X, d_X)\) and \((Z, d_Z)\) are said to have the \textit{isometric extension property} if for any function \(f : E \rightarrow Z\) with \(\text{Lip}(f; E) < \infty\), there exists an extension \(F : X \rightarrow Z\) such that

- \(F(x) = f(x)\) for all \(x \in E\).
- \(\text{Lip}(F; X) = \text{Lip}(f; E)\).

Pairs of metric spaces with the isometric Lipschitz extension property:

- \((X, d_X) = \mathbb{R}^n\) and \((Z, d_Z) = \mathbb{R}\) (McShane, 1934; Whitney, 1934). Can generalize so that \((X, d_X)\) is arbitrary.
- \((X, d_X) = \mathcal{H}_1\) and \((Z, d_Z) = \mathcal{H}_2\), where \(\mathcal{H}_1\) and \(\mathcal{H}_2\) are Hilbert spaces (Kirschbraun, 1934).
- \((X, d_X)\) is arbitrary and \((Z, d_Z)\) is metrically convex and has the binary intersection property, e.g., \((Z, d_Z) = \ell_n^\infty\).
Non-Uniqueness of the Minimal Extension

- Assume \((X, d_X)\) and \((Z, d_Z)\) have the isometric extension property.
- For an arbitrary function \(f : E \rightarrow Z\) with \(\text{Lip}(f; E) < \infty\), the minimal extension \(F : X \rightarrow Z\) is in general not unique.

Example

- Set \((X, d_X) = \mathbb{R}^n\) and \((Z, d_Z) = \mathbb{R}\).
- Let \(f : E \rightarrow \mathbb{R}\) with \(\text{Lip}(f; E) < \infty\).
- Two minimal extensions of \(f\) are given by:

 \[
 m(f)(x) \triangleq \sup_{y \in E} (f(y) - \text{Lip}(f; E)\|x - y\|), \quad x \in \mathbb{R}^n
 \]

 \[
 M(f)(x) \triangleq \inf_{y \in E} (f(y) + \text{Lip}(f; E)\|x - y\|), \quad x \in \mathbb{R}^n
 \]

- In general, \(m(f) \neq M(f)\), and there is a range of minimal extensions \(F : \mathbb{R}^n \rightarrow \mathbb{R}\) satisfying \(m(f) \leq F \leq M(f)\).
Non-Uniqueness of the Minimal Extension

Example (continued)

- $n = 1$, so that $(X, d_X) = \mathbb{R}$.
- $E = \{-1, 0, 1\}$.
- $f(-1) = 0, f(0) = 0, f(1) = 1$.

![Graph showing the function $f(x)$ over the interval $[-2, 2]$]
Absolutely Minimal Lipschitz Extensions

Let $f : E \to Z$ have minimal Lipschitz extension $F : X \to Z$ such that $\text{Lip}(F; X) = \text{Lip}(f; E)$. The function F is an absolutely minimal Lipschitz extension (AMLE) if for every open subset $V \subset X \setminus E$ and every Lipschitz mapping $\tilde{F} : X \to Z$ that coincides with F on $X \setminus V$,

$$\text{Lip}(F; V) \leq \text{Lip}(\tilde{F}; V).$$

- An AMLE is the “locally best” Lipschitz extension.
New developments in the theory of absolutely minimal Lipschitz extensions

History of Absolutely Minimal Lipschitz Extensions

Locally Best Extensions

Absolutely Minimal Lipschitz Extensions

- When \((X, d_X)\) is path connected, the following definition of an AMLE is equivalent to the previous one.

Absolutely Minimal Lipschitz Extension (Aronsson, 1967)

Let \(f : E \rightarrow Z\) have minimal Lipschitz extension \(F : X \rightarrow Z\) such that \(\text{Lip}(F; X) = \text{Lip}(f; E)\). The function \(F\) is an absolutely minimal Lipschitz extension (AMLE) if for every open subset \(V \subset X \setminus E\),

\[
\text{Lip}(F; V) = \text{Lip}(F; \partial V).
\]
Back to the Example

Example

- \((X, d_X) = (Z, d_Z) = \mathbb{R}\).
- \(E = \{-1, 0, 1\}\).
- \(f(-1) = 0, f(0) = 0, f(1) = 1\).
Existence and Uniqueness

- Let \((X, d_X) = \mathbb{R}^n\).
- Let \((Z, d_Z) = \mathbb{R}\).

Existence: An AMLE extending \(f\) exists (Aronsson, 1967).

Uniqueness: The AMLE extending \(f\) is unique (Jensen, 1993).
New developments in the theory of absolutely minimal Lipschitz extensions

History of Absolutely Minimal Lipschitz Extensions

Past and Present Results

Relationship to PDEs

The Infinity Laplacian

\[\Delta_\infty g \triangleq \sum_{i,j=1}^{n} \frac{\partial^2 g}{\partial x_i \partial x_j} \frac{\partial g}{\partial x_i} \frac{\partial g}{\partial x_j}. \]

Equivalence

Given \(f : E \rightarrow \mathbb{R} \) with \(\text{Lip}(f; E) < \infty \), let \(F : \mathbb{R}^n \rightarrow \mathbb{R} \) be a minimal Lipschitz extension of \(f \).

- If \(F \in C^2 \), then \(F \) is the AMLE for \(f \) \iff \(\Delta_\infty F = 0 \) on \(\mathbb{R}^n \setminus E \) (Aronsson, 1967).

- If \(F \notin C^2 \), then \(F \) is an AMLE for \(f \) \iff \(\Delta_\infty F = 0 \) on \(\mathbb{R}^n \setminus E \), interpreted as a viscosity solution (Jensen, 1993).
Generalizations on the Domain

- Let \((X, d_X)\) be a length space.
- Set \((Z, d_Z) = \mathbb{R}\).

Existence and Uniqueness

Existence of an AMLE:
- Mil’man, 1999.
- Juutinen, 2002 \([X, d_X]\) is separable.
- Le Gruyer, 2007 \([X, d_X]\) is compact.

Uniqueness of the AMLE:
- Peres, Schramm, Sheffield, an Wilson (Tug of War).
Results for Non-Scalar Valued Functions

Naor and Sheffield, 2012

AMLEs exist and are unique when:
- (X, d_X) is a locally compact length space.
- (Z, d_Z) is a metric tree.

Sheffield and Smart, 2012

Tight AMLEs exist and are unique when:
- (X, d_X) is a finite graph.
- $(Z, d_Z) = \mathbb{R}^m$.

Also addresses the case when $(X, d_X) = \mathbb{R}^n$ (but does not solve it).
Overview

1. History of Absolutely Minimal Lipschitz Extensions

2. Quasi Absolutely Minimal Lipschitz Extensions
 - Generalized Lipschitz Extensions
 - Existence of Quasi-AMLEs
 - Sketch of Proof
Properties of the Metric Spaces

For the domain \((X, d_X)\), we require:

- Compact.
- Every two points are joined by a unique geodesic of finite length. Note that this implies that for every two points \(x, y \in X\), there exists a unique midpoint \(m(x, y) \in X\) such that

\[
d_X(x, m(x, y)) = d_X(m(x, y), y) = \frac{1}{2} d_X(x, y).
\]

For the range \((R, d_R)\):

- Complete.
Generalized Lipschitz Functionals

Set $\mathcal{F}(X, Z) \triangleq \{ g : D \rightarrow Z : D \subset X \}$.

A generalized Lipschitz functional is a functional Φ of the form:

$$\Phi : \mathcal{F}(X, Z) \rightarrow \mathcal{F}(X \times X, \mathbb{R}^+ \cup \{\infty\})$$

$$g \mapsto \Phi(g; \cdot, \cdot) : \text{dom}(g) \times \text{dom}(g) \rightarrow \mathbb{R}^+ \cup \{\infty\}.$$

We also set, for any $D \subset \text{dom}(g)$,

$$\Phi(g; D) \triangleq \sup_{x, y \in D, x \neq y} \Phi(g; x, y).$$

Define $\mathcal{F}_\Phi(X, Z) = \{ g \in \mathcal{F}(X, Z) : \Phi(g; \text{dom}(g)) < \infty \}$.
Generalized Lipschitz Functionals

Example

\[\Phi(g; x, y) = \frac{d_Z(g(x), g(y))}{d_x(x, y)}, \]

\[\Phi(g; D) = \sup_{x, y \in D} \Phi(g; x, y) = \text{Lip}(g; D). \]
Consider $f : E \rightarrow Z$ such that $f \in \mathcal{F}_\Phi(X, Z)$. A function $F : X \rightarrow Z$ is a \textit{minimal extension} of f if:

- $F(x) = f(x)$ for all $x \in E$.
- $\Phi(F; X) = \Phi(f; E)$.

The function F is an \textit{AMLE} for f if it additionally satisfies

$$\Phi(F; V) = \Phi(F; \partial V), \quad \text{for all open } V \subset X \setminus E.$$
Properties of Φ

1. **Symmetry:** $\Phi(g; x, y) = \Phi(g; y, x)$.

2. **Isometric extension property:** For all $g \in \mathcal{F}_\Phi(X, Z)$ with $\text{dom}(g) = D$, there exists an extension $G : X \rightarrow Z$ such that $\Phi(G; X) = \Phi(g; D)$.

3. **Continuity of the function:** If $g \in \mathcal{F}_\Phi(X, Z)$, then g is a continuous function.

4. **Continuity of the functional:** Let $g \in \mathcal{F}_\Phi(X, Z)$ with $\text{dom}(g) = D$. For each $x, y \in D$, there exists $\eta > 0$ such that

 \[\forall z \in B_\eta(y) \cap D, \quad |\Phi(g; x, y) - \Phi(g; x, z)| < \varepsilon. \]
Properties of Φ

- Set $B_{1/2}(x, y) \triangleq B_r(m(x, y))$, with $r = \frac{1}{2} d_X(x, y)$.

- For each $x, y \in X$, let $\Gamma(x, y)$ denote the set of curves $\gamma : [0, 1] \to B_{1/2}(x, y)$ such that $\gamma(0) = x$, $\gamma(1) = y$, γ is continuous, and γ is monotone in the following sense:

$$
\text{if } 0 \leq t < s \leq 1, \text{ then } d_X(x, \gamma(t)) < d_X(x, \gamma(s)).
$$

Final property of Φ:

5. **Bounding Curve:** For all $g \in \mathcal{F}_\Phi(X, Z)$ with $\text{dom}(g) = D$, and for all $x, y \in E$ with $B_{1/2}(x, y) \subset D$, there exists a curve $\gamma \in \Gamma(x, y)$ such that

$$
\Phi(g; x, y) \leq \inf_{t \in [0, 1]} \max \{\Phi(g; x, \gamma(t)), \Phi(g; \gamma(t), y)\}.
$$
Examples of Admissible Triplets \((X, Z, \Phi)\)

<table>
<thead>
<tr>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (\Phi(g; D) = \text{Lip}(g; D)) and any pair ((X, d_X)) and ((Z, d_Z)) that have the isometric extension property.</td>
</tr>
<tr>
<td>2 Let (\alpha \in (0, 1]), and define the Lipschitz-Hölder constant as</td>
</tr>
</tbody>
</table>

\[
\text{Lip}_\alpha(g; D) \triangleq \sup_{x, y \in D} \frac{d_Z(g(x), g(y))}{d_X(x, y)^\alpha}.
\]

Then \(\Phi(g; D) = \text{Lip}_\alpha(g; D)\) and any pair \((X, d_X)\) and \((Z, d_Z)\) that have the isometric extension property for \(\text{Lip}_\alpha\). Some examples of such pairs are:

- \((X, d_X) = (Z, d_Z) = \mathcal{H}\), where \(\mathcal{H}\) is a Hilbert space, and \(0 < \alpha \leq 1\).
- \((X, d_X)\) arbitrary, \((Z, d_Z) = L^p(\mathcal{N}, \nu)\), and:
 - \(1 < p \leq 2\) with \(0 < \alpha \leq \frac{p-1}{p}\).
 - \(2 \leq p < \infty\) with \(0 < \alpha \leq \frac{1}{p}\).
Examples of Admissible Triplets \((X, Z, \Phi)\)

Example (1-Fields, Le Gruyer, 2009)

3. Set \((X, d_X) = \mathbb{R}^n\) and let \((Z, d_Z) = \mathcal{P}^1(\mathbb{R}^n, \mathbb{R})\), the set of 1st order polynomials (affine functions).

- Notation:

\[
T : \mathbb{R}^n \to \mathcal{P}^1(\mathbb{R}^n, \mathbb{R}) \\
x \mapsto T_x
\]

- Define \(\Phi\) as:

\[
\Phi(T; x, y) = 2 \sup_{a \in \mathbb{R}^n} \frac{|T_x(a) - T_y(a)|}{\|x - a\|^2 + \|y - a\|^2}.
\]

- Meaning of the minimal extension: Let \(T : E \to \mathcal{P}^1(\mathbb{R}^n, \mathbb{R})\), and let \(U : \mathbb{R}^n \to \mathcal{P}^1(\mathbb{R}^n, \mathbb{R})\) be a minimal extension of \(T\). Set \(F(x) \triangleq U_x(x)\).

- Extension: \(F\) extends \(T\) so that

\[
J_xF(a) \triangleq F(x) + \nabla F(x) \cdot (a - x) = T_x(a) \text{ for all } x \in E.
\]

- Minimal: \(\text{Lip}(\nabla F)\) is minimal amongst all such extensions.
1st Approximation: Open Sets

- Let $N_0 \in \mathbb{N}$.
- Let $\rho > 0$.

Set of Open Sets

$$
\mathcal{O}(\rho, N_0) \triangleq \left\{ \Omega = \bigcup_{i=1}^{N} B_{r_i}(x_i) : x_i \in X, \ r_i \geq \rho, \ N \leq N_0 \right\}.
$$
2nd Approximation: The Lipschitz Functional

- Let $\alpha \geq 0$.
- Let $g : D \to Z$, $D \subset X$.
- Let $V \subset D$ be open.

Approximation Functional

$$\Psi_\alpha(f; V) \triangleq \sup \{ \Phi(f; x, y) : B_{d_X(x,y)}(x) \subset V, \ d_X(x, \partial V) \geq \alpha \}.$$

Proposition (H. and Le Gruyer, 2012)

$$\Phi(f; V) = \max \{ \Psi_0(f; V), \Phi(f; \partial V) \}.$$
Main Result

Theorem (H. and Le Gruyer, 2012)

Given an admissible triple \((X, Z, \Phi)\), as well as \(f \in \mathcal{F}_\Phi(X, Z)\) with \(\text{dom}(f) = E, \rho > 0, N_0 \in \mathbb{N}, \alpha > 0, \text{and } \sigma_0 > 0\), there exists a **quasi-AMLE** \(F : X \to Z\) that satisfies:

1. \(F\) is a minimal extension of \(f\), i.e.,
 - \(F(x) = f(x)\) for all \(x \in E\).
 - \(\Phi(F; X) = \Phi(f; E)\).

2. The following quasi-AMLE condition is satisfied:

 \[
 \Psi_\alpha(F; \Omega) - \Phi(F; \partial \Omega) < \sigma_0, \quad \forall \Omega \in \mathcal{O}(\rho, N_0), \quad \Omega \subset X \setminus E.
 \]
Correction Operator

Let \(g \in \mathcal{F}_\Phi(X, Z) \) with \(\text{dom}(g) = D \).

Let \(V \subset X \) be open such that \(\overline{V} \subset D \).

Use the isometric extension property of \(\Phi \) to obtain \(G : \overline{V} \to Z \) such that

- \(G(x) = g(x) \) for all \(x \in \partial V \).
- \(\Phi(G; V) = \Phi(g; \partial V) \).

Define the correction operator \(H \) as:

\[
H(g; V)(x) \triangleq G(x).
\]
Sequence of Minimal Extensions

- We construct a sequence of minimal extensions
 \(\{F_i : X \to Z : i \in \mathbb{N}\} \) for \(f : E \to Z \).
- For each \(i \in \mathbb{N} \), define:
 \[
 \Delta_i \triangleq \{ \Omega \in \mathcal{O}(\rho, N_0) : \Psi_\alpha(F_i; \Omega) - \Phi(F_i; \partial \Omega) \geq \sigma_0, \ \Omega \subset X \setminus E \}.
 \]
- If \(\Delta_i = \emptyset \), then \(U_i \) is a quasi-AMLE for \(f \).
- If \(\Delta_i \neq \emptyset \), then pick any \(\Omega_{i+1} \in \Delta_i \) and construct \(F_{i+1} \):
 \[
 F_{i+1}(x) \triangleq \begin{cases}
 H(F_i; \Omega_{i+1})(x), & x \in \Omega_{i+1}, \\
 F_i(x), & x \in X \setminus \Omega_{i+1}.
 \end{cases}
 \]
Main Lemma

Main Lemma (H. and Le Gruyer, 2012)

The following property holds true for all $p \in \mathbb{N}$:

$$\exists M_p \in \mathbb{N} \ s.t. \ \forall i > M_p, \ \Phi(F_i; \Omega_i) < \Phi(f; E) - p \frac{\sigma_0}{2}. \quad (Q_p)$$

- **Initial Case:** $p = 1$

 $$\Phi(F_i; \Omega_i) = \Phi(H(F_{i-1}; \Omega_i); \Omega_i)$$
 $$= \Phi(F_{i-1}; \partial \Omega_i)$$
 $$\leq \Psi_\alpha(F_{i-1}; \Omega_i) - \sigma_0$$
 $$\leq \Phi(f; E) - \sigma_0.$$

- **Inductive Step:** Harder...
Questions

- Given a sequence of quasi-AMLEs \(\{F_{\rho,N_0,\alpha,\sigma_0}\} \), can we take the limit \(F_{\rho,N_0,\alpha,\sigma_0} \to F_0 \) as \(\rho, \frac{1}{N_0}, \alpha, \sigma_0 \to 0 \) to obtain an actual AMLE?

- What if we only have the *isomorphic extension property*? That is, for all \(f \in \mathcal{F}_\Phi(X, Z) \) with \(\text{dom}(f) = E \), there exists an extension \(F : X \to Z \) and constant \(C \) (depending only on \((X, d_X) \) and \((Z, d_Z) \)) such that

\[
\Phi(F; X) \leq C \cdot \Phi(f; E).
\]
New developments in the theory of absolutely minimal Lipschitz extensions
Quasi Absolutely Minimal Lipschitz Extensions
Sketch of Proof

Thank you

www.math.yale.edu/~mh644