Regression of Quantum Energies by Scattering

Matthew Hirn, Stéphane Mallat, Nicolas Poilvert

May 7, 2015
Quantum Energy Regression

- $x = \text{state of molecule} = (\text{nuclear charges, positions of nuclei}) = \{(z_k, r_k) \in \mathbb{R} \times \mathbb{R}^3\}_k$

- Energy of the molecule:
 Schrödinger’s Equation
 \[
 \hat{H}\Psi = E\Psi, \quad E = E(x)
 \]

- Instead of using quantum mechanical computations to compute the energy, want to interpolate the energy from a set of known examples.

- Interpolation is faster, but can we make it accurate?
Quantum Energy Regression

• Given a small training set of known examples:

\[
\text{Training Set} = \{(x_i, E(x_i))\}_i
\]

• Using knowledge of the physics, construct a new nonlinear representation of the molecular state

\[
\Phi(x) = \{\phi_p(x)\}_p
\]

• Linearly regress the energy over this new dictionary:

\[
\tilde{E}(x) = \sum_p \alpha_p \phi_p(x)
\]

Learn the weights \(\{\alpha_p\}_p\) from the training set

• Computational cost is the cost of computing \(\Phi(x)\)
Representation Properties

Regression: $\tilde{E}(x) = \sum_p \alpha_p \phi_p(x), \quad x = \{(z_k, r_k)\}_k$

1. **Sparse Regression:**
 Can only learn a few weights from limited training

2. **Permutation Invariance:**
 Invariant to permutations of the indexation of the atoms in each molecule

3. **Isometry Invariance:**
 Invariant to actions of the isometry group on the molecular state

4. **Deformation Stability:**
 Differentiable with respect to the positions of the atoms

5. **Multi-scale Interactions:**
 - Highly energetic covalent bonds between neighboring atoms
 - Weaker energetic exchanges at longer distances
Permutation Invariance: Density Functional Theory

- Molecular state:
 \[x = \{ (z_k, r_k) \}_{k} \]

- Electronic density:
 \[x \mapsto \rho_{x}(u) \]

- Hohenberg and Kohn 1964:
 \[\rho_{x} = \arg \min_{\rho} E(\rho) \text{ and } E(x) = E(\rho_{x}) \]

\[
E(\rho) = \underbrace{T(\rho)}_{\text{Kinetic energy}} + \underbrace{\int_{\mathbb{R}^3} \rho(u)V_{e}(u) \, du}_{\text{External energy (electron-nuclei attraction)}} + \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\rho(u)\rho(v)}{|u - v|} \, du \, dv + \underbrace{E_{xc}(\rho)}_{\text{Exchange correlation energy}}
\]
Permutation Invariance: Density Functional Theory

• ρ_x is permutation invariant, but still need other properties

• Given ρ_x, we could interpolate $E(\rho_x)$ in a dictionary $\Phi(\rho_x) = \{\phi_p(\rho_x)\}_p$

• Computing ρ_x requires complex quantum mechanical calculations. Need a substitute that we can compute fast.

$$E(\rho) = \underbrace{T(\rho)}_{\text{Kinetic energy}} + \int_{\mathbb{R}^3} \rho(u)V_e(u) \, du + \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{\rho(u)\rho(v)}{|u - v|} \, du \, dv + \underbrace{E_{xc}(\rho)}_{\text{Exchange correlation energy}}$$

- Kinetic energy
- External energy (electron-nuclei attraction)
- Coulomb energy (electron-electron repulsion)
- Exchange correlation energy
Approximate Electronic Density

- We approximate the electronic density with a linear superposition of atomic electronic densities:

\[\tilde{\rho}_x(u) = \sum_k \rho_{a(k)}(u - r_k) \]

\(\rho_a = \) exact electronic density of atom \(a \)

- The regression is then computed as:

\[E(x) = E(\rho_x) \approx \tilde{E}(\tilde{\rho}_x) = \sum_p \alpha_p \phi_p(\tilde{\rho}_x) \]
Approximate Electronic Density

- We approximate the electronic density with a linear superposition of atomic electronic densities:
\[
\tilde{\rho}_x(u) = \sum_{k} \rho_{a(k)}(u - r_k)
\]
\[
\rho_a = \text{exact electronic density of atom } a
\]

- The regression is then computed as:
\[
E(x) = E(\rho_x) \approx \tilde{E}(\tilde{\rho}_x) = \sum_{p} \alpha_p \phi_p(\tilde{\rho}_x)
\]

What is the dictionary \(\Phi = \{\phi_p\}_p \)?
Coulomb Potential Energy

- Coulomb Potential Energy:

\[
U(\rho) = \frac{1}{2} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \rho(u)\rho(v)V(u - v) \, du \, dv, \quad V(u) = |u|^{-1}
\]

- Convolutional formula for Coulomb energy:

\[
U(\rho) = \frac{1}{2} \int_{\mathbb{R}^3} \rho * \bar{\rho}(u)V(u) \, du, \quad \bar{\rho}(u) = \rho(-u)
\]

- Fourier transform:

\[
\hat{\rho}(\omega) = \int_{\mathbb{R}^3} \rho(u)e^{-iu\cdot\omega} \, du
\]

- Coulomb energy in frequency:

\[
U(\rho) = \frac{1}{2(2\pi)^3} \int_{\mathbb{R}^3} |\hat{\rho}(\omega)|^2 \hat{V}(\omega) \, d\omega
\]
Fourier Regression of Coulomb Potential Energy

- Coulomb energy diagonalized in Fourier:
 \[U(\rho) = \frac{1}{2(2\pi)^3} \int_{\mathbb{R}^3} |\hat{\rho}(\omega)|^2 \hat{V}(\omega) \, d\omega \quad \hat{V}(\omega) = C|\omega|^{-2} \]

- Isometry Invariant Fourier Representation:
 In polar coordinates \(\omega = \gamma \eta \) with \(\gamma = |\omega| \) and \(\eta \in S^2 \), \(\hat{V}(\omega) = \hat{V}(\gamma) \) so
 \[U(\rho) = \frac{1}{2(2\pi)^3} \int_{\mathbb{R}} \hat{V}(\gamma) \phi^2_\gamma(\rho) \, d\gamma, \quad \phi^2_\gamma(\rho) = \int_{|\omega|=\gamma} |\hat{\rho}(\omega)|^2 \, d\omega \]

- To learn discrete weights, approximate with Riemann sum:
 \[\tilde{U}(\rho) = \frac{\Delta}{2(2\pi)^3} \sum_{m=1}^{M} \hat{V}(m\Delta) \phi^2_{m\Delta}(\rho) \]

- \(U(\rho) = (1 + O(\epsilon))\tilde{U}(\rho) \Rightarrow M = O(\epsilon^{-2}) \)
Fourier Limitations

- The Fourier representation does not take advantage of the regularity of $\hat{V}(\omega)$ away from $\omega = 0$. Therefore it is not sparse.

- Deformations produce instabilities at large distances, so it cannot model long range interactions:

$$\phi_\omega(\rho) = |\hat{\rho}(\omega)|^2$$

is equivalent to

$$\phi_u(\rho) = \rho \ast \bar{\rho}(u)$$

$\rho(u) =$ bumps of width σ at positions $\{r_k\}_k$

$\phi_u(\rho) =$ bumps of width 2σ at positions $\{r_k - r_l\}_{k,l}$

A small diffeomorphism changes distances by $\epsilon(r_k - r_l)$

Unstable if $|r_k - r_l| \geq 2\sigma/\epsilon$
Wavelets

• Complex valued Morlet wavelet:
 \[
 \psi(u) = g(u)(e^{i\eta_0 \cdot u} - C), \quad \int_{\mathbb{R}^3} \psi(u) \, du = 0
 \]

• Wavelet transform dilates and rotates the wavelet:
 \[
 \psi_{j,r}(u) = 2^{-\frac{j}{2}} \psi(2^{-\frac{j}{2}} r^{-1} u), \quad (j, r) \in \mathbb{Z} \times \text{O}(3)
 \]
 \[
 Q \in \mathbb{N} : \text{Scale oversampling factor}
 \]
 \[
 W[j, r]\rho(u) = \{\rho * \psi_{j,r}(u)\}_{j \in \mathbb{Z}, r \in \text{O}(3), u \in \mathbb{R}^3}
 \]
Fourier vs Wavelets

• Wavelets separate scales logarithmically and can thus take advantage of the multi-scale structure of the energy. For the Coulomb potential energy, wavelets take advantage of the regularity of $\hat{V}(\omega)$ away from $\omega = 0$.

• Mallat 2012: Wavelets are stable. They are Lipschitz continuous to the action of diffeomorphisms:

$$\| [W, D_\tau] \| = \| WD_\tau - D_\tau W \| \leq C \cdot \sup_{u \in \mathbb{R}^3} \| \nabla \tau(u) \|$$
Wavelet Transform: Interactions of Waves

\[|\rho \ast \psi_{1,j_1,\theta_1}(u)| \]
Wavelet Regression of Coulomb Potential Energy

Definition: Isometry Invariant Wavelet Representation

Define the L^2 Isometry Invariant Wavelet Representation $\Phi = \{\phi_j^2\}_{j \in \mathbb{Z}}$ as

$$\phi_j^2(\rho) = \int_{\mathbb{R}^3} \int_{O(3)} |\rho * \psi_{j,r}(u)|^2 \, dr \, du$$

Theorem: Wavelet Coulomb Regression (H., Mallat, Poilvert 2015)

For a scale oversampling factor $Q \in \mathbb{N}$, a minimum scale $j_{\text{min}} \in \mathbb{Z}$, and a maximum scale $j_{\text{max}} \in \mathbb{Z}$, define the Wavelet Regression of the Coulomb potential energy as:

$$\tilde{U}(\rho) = \sum_{j = j_{\text{min}}}^{j_{\text{max}}} (c_1 2^{2j/Q} + c_2) \phi_j^2(\rho)$$

Then, for all $\epsilon > 0$, there exists Q, j_{min} and j_{max} such that

$$|U(\rho) - \tilde{U}(\rho)| < \epsilon \cdot \max(\|\rho\|^2_1, \|\rho\|^2_2)$$

The number of terms grows as $|j_{\text{min}} - j_{\text{max}}| = O(|\log \epsilon|)$.
Quantum Wavelet and Fourier Dictionaries

- Full quantum energy is not solely quadratic!
 - Coulomb energy is quadratic in ρ
 - Chemical (covalent) bond energy grows linearly in ρ

Definition: Isometry Invariant L^q Fourier Dictionary

$$\phi_{\gamma,q}(\rho) = \left(\int_{|\omega| = \gamma} |\tilde{\rho}(\omega)|^q d\omega \right)^{1/q}$$

$$\Phi_F(\rho) = \{\phi_0(\rho), \phi_{\gamma,1}(\rho), \phi_{\gamma,2}(\rho), \phi_{\gamma,3}(\rho)\}_{\gamma \in \mathbb{R}^+}$$

Definition: Isometry Invariant L^q Wavelet Dictionary

$$\phi_{\gamma,q}(\rho) = \left(\int_{\mathbb{R}^3} \int_{O(3)} |\rho * \psi_{j,r}(u)|^q dr du \right)^{1/q}$$

$$\Phi_W(\rho) = \{\phi_0(\rho), \phi_j,1(\rho), \phi_{j,1}(\rho), \phi_{j,2}(\rho)\}_{j \in \mathbb{Z}}$$
Learning the Weights

• Training set: \(\{(x_i, E(x_i)) \}_i \leftrightarrow \{ (\tilde{\rho}_x, E(\rho_x)) \}_i \)

• Want an optimal M-term sparse regression that will minimize the error over the training set (NP hard!):

\[
\tilde{E}_M (\tilde{\rho}_x) = \sum_{k=1}^{M} \alpha_k \phi_{p_k} (\tilde{\rho}_x)
\]

• Orthogonal least squares greedy algorithm selects the functionals and learns the weights one at a time by minimizing

\[
\sum_{i} \left| E(\rho_{x_i}) - \tilde{E}_m (\tilde{\rho}_{x_i}) \right|^2
\]

at each iteration \(m = 1, \ldots, M \)

• The optimal value of M (to avoid overfit) is learned through cross validation

• The variance error is reduced by “bagging”
Data Set

- Data set \(\{x_i, E(x_i)\}_i \) consisting of over 4000 planar organic molecules made up of hydrogen, carbon, nitrogen, oxygen, sulfur, and chlorine.

- Molecules have between 6 and 20 atoms

- Each molecule \(x_i \) is unique and in its ground state configuration (configuration that minimizes energy)

- \(E(x_i) \) is the atomization energy of the molecule (energy necessary to break atomic bonds)
Fourier and Wavelet M-term Regression Error

Key: Fourier, Wavelets, Coulomb matrices (dashed line)

Root mean square error as function of number of regression terms

\[\tilde{E}_M(\tilde{\rho}_x) = \sum_{k=1}^{M} \alpha_k \phi_{p_k}(\tilde{\rho}_x) \]

Root Mean Square Error (kcal/mol)

<table>
<thead>
<tr>
<th></th>
<th>Coulomb</th>
<th>Fourier</th>
<th>Wavelet</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 Training</td>
<td>5.8</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>400 Training</td>
<td>21</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Error = Bias + Variance

Dominating
Scattering in 2D: Layer 1

\[\phi_0(\rho) = \int_{\mathbb{R}^2} \rho(u) \, du \]

\[\rho(u) \]

\[| \rho * \psi_{j_1, \theta_1}(u) | \]

Rotations \(\theta_1 \)

Scales \(j_1 \)
Scattering in 2D: Layer 1

Rotations θ_1

Scales j_1

$$|\rho \ast \psi_{j_1, \theta_1}(u)|$$

$$\phi_{j_1, q}^q(\rho) = \int_{\mathbb{R}^2} \int_0^{2\pi} |\rho \ast \psi_{j_1, \theta_1}(u)|^q d\theta_1 du$$

~60 functionals
Scattering in 2D: Layer 2

Rotations θ_1

Recover translation variability:
\[|\rho \ast \psi_{j_1, \theta_1} \ast \psi_{j_2, \theta_2}(u) | \]

Recover rotation variability:
\[|\rho \ast \psi_{j_1, \theta_1}(u) \ast \psi_{l_2}(\theta_1) | \]

Combine to recover roto-translation variability:
\[||\rho \ast \psi_{j_1, \theta_1} \ast \psi_{j_2, \theta_2}(u) \ast \psi_{l_2}(\theta_1) | || \]
Scattering in 2D: Layer 2

$|\rho \ast \psi_{j_1, \theta_1}(u)|$, j_1 fixed

Video frames: $\theta_1 - \theta_2$

$\phi_{j_1,j_2,\beta,l_2,q}^q(\rho) = \int_{\mathbb{R}^2} \int_{0}^{2\pi} \frac{1}{|\rho \ast \psi_{j_1,.} \ast \psi_{j_2,\theta_2}(u) \otimes \bar{\psi}_{l_2}(\theta_1)|^q} \, d\theta_1 \, du$

~ 10000 functionals
Scattering
M-term Regression Error

\[
\tilde{E}_M(\tilde{\rho}_x) = \sum_{k=1}^{M} \alpha_k \phi_{p_k}(\tilde{\rho}_x)
\]

Key: Fourier, Wavelets, Scattering, Coulomb (dashed line)
Numerical Results

Root Mean Square Error (kcal/mol)

<table>
<thead>
<tr>
<th></th>
<th>Coulomb</th>
<th>Fourier</th>
<th>Wavelet</th>
<th>Scattering</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 Training</td>
<td>5.8</td>
<td>17</td>
<td>14</td>
<td>2.7</td>
</tr>
<tr>
<td>400 Training</td>
<td>21</td>
<td>16</td>
<td>16</td>
<td>9.0</td>
</tr>
</tbody>
</table>

- Cost in real time: minutes per molecule

- Some open questions and future directions:
 - More training -> Better scattering result?
 - Utilize forces: Scattering functionals are differentiable
 - Mathematical explanation for the 2nd layer functionals?
 - Can we learn chemistry?
 - What other physical functionals can we learn?
Scattering in 3D: 1st Layer

- $E(3) = \mathbb{R}^3 \rtimes O(3)$ and $O(3) = S^2 \rtimes O(2)$

- If we use a wavelet ψ that is radially symmetric about an axis η_0, then we can ignore the $O(2)$ component since ψ will not vary over $O(2)$

\[
\text{if } r\eta_0 = \eta_0 \text{ then } \psi(ru) = \psi(u), \ r \in O(3)
\]

\[
\psi(u) = g(u)(e^{i\eta_0 \cdot u} - C)
\]

- For the first layer wavelet transform, this means we can index the rotation by $\eta \in S^2$:

\[
\psi_{j,r}(u) = \psi_{j,\eta}(u) = 2^{-\frac{j}{2}} \psi(2^{-\frac{j}{2}} r^{-1} u), \ \eta = r\eta_0 \in S^2, \ j \in \mathbb{Z}
\]

\[
\rho(u) \mapsto |\rho \ast \psi_{j,\eta}(u)|
\]

\[
\phi_{j,p}(\rho) = \left(\int_{\mathbb{R}^3} \int_{S^2} |\rho \ast \psi_{j,\eta}(u)|^p \, d\eta \, du \right)^{1/p}
\]
Scattering in 3D: 2nd Layer

- The second layer can be computed as two separable wavelet transforms, one over translations (\mathbb{R}^3) and one over rotations (S^2).

- Isotropic wavelet over S^2:
 \[\overline{\psi}_{l,\nu} : S^2 \to \mathbb{R}, \text{ scale } 2^l \text{ and translation } \nu \in S^2 \]

- Wavelet transform over \mathbb{R}^3 with the same Morlet wavelet:
 \[|\rho \ast \psi_{j_1,\eta_1} \ast \psi_{j_2,\eta_2}(u) | \]

- Followed by the wavelet transform over S^2:
 \[\int_{S^2} |\rho \ast \psi_{j_1,\eta_1} \ast \psi_{j_2,\eta_2}(u) \overline{\psi}_{l_2,\nu}(\eta) | d\eta \]

- Second layer functionals:
 \[\phi_{j_1,j_2,\eta_2,l_2,p}(\rho) = \left(\int_{\mathbb{R}^3} \int_{S^2} \int_{S^2} |\rho \ast \psi_{j_1,\eta_1} \ast \psi_{j_2,\eta_2}(u) \overline{\psi}_{l_2,\nu}(\eta) | d\eta \right)^{p} d\nu d\eta \]
Thank you