1 Vector Spaces

What is this course about?

1. Understanding the structural properties of a wide class of spaces which all share a similar additive and multiplicative structure
 structure = “vector addition and scalar multiplication” → vector spaces

2. The study of linear maps on finite dimensional vector spaces

We begin with vector spaces. First two examples:

1. \(\mathbb{R}^n = n\)-tuples of real numbers \(x = (x_1, \ldots, x_n) \), \(x_k \in \mathbb{R} \)
 vector addition: \(x+y = (x_1, \ldots, x_n) + (y_1, \ldots, y_n) = (x_1+y_1, \ldots, x_n+y_n) \)
 scalar multiplication: \(\lambda \in \mathbb{R}, \lambda x = \lambda (x_1, \ldots, x_n) = (\lambda x_1, \ldots, \lambda x_n) \)

2. \(\mathbb{C}^n \) [on your own: review 1.A on complex numbers]

1. Definition of Vector Space

Scalars: Field \(\mathbb{F} \) (assume \(\mathbb{F} = \mathbb{R} \) or \(\mathbb{C} \) unless otherwise stated). So the previous two vector spaces can be written as \(\mathbb{F}^n \) with scalars \(\mathbb{F} \)

Let \(V \) be a set (for now).
Definition 1 (Vector addition). \(u, v \in V \), assigns an element \(u + v \in V \)

Definition 2 (Scalar multiplication). \(\lambda \in \mathbb{F}, \ v \in V \), assigns an element \(\lambda v \in V \)

Definition 3 (Vector space). A set \(V \) is a vector space over the field \(\mathbb{F} \) if vector addition and scalar multiplication are defined, and the following properties hold \((u, v, w \in V, \ a, b \in \mathbb{F}) \):

1. **Commutativity**: \(u + v = v + u \)
2. **Associativity**: \((u + v) + w = u + (v + w) \) and \((ab)v = a(bv) \)
3. **Additive Identity**: \(\exists 0 \in V \) such that \(v + 0 = v \)
4. **Additive Inverse**: for every \(v \) there exists \(w \) such that \(v + w = 0 \)
5. **Multiplicative Identity**: \(1v = v \)
6. **Distributive Properties**: \(a(u + v) = au + av \) and \((a + b)v = av + bv \)

If \(\mathbb{F} = \mathbb{R} \), “real vector space”
If \(\mathbb{F} = \mathbb{C} \), “complex vector space”

From here on out \(V \) will always denote a vector space.

Two more examples of vector spaces:

1. \(\mathbb{F}^\infty \): \(x = (x_1, x_2, \ldots) \) just like \(\mathbb{F}^n \)
2. \(\mathbb{F}^S \) = the set of functions \(f : S \to \mathbb{F} \) from \(S \) to \(\mathbb{F} \) [check on your own]

Now for some important properties...

Proposition 1. The additive identity is unique.

Proof. Let \(0_1 \) and \(0_2 \) be any two additive identities. Then

\[
0_1 = 0_1 + 0_2 = 0_2 + 0_1 = 0_2
\]

Proposition 2. The additive inverse is unique.
Proof. Let \(w_1 \) and \(w_2 \) be two additive inverses of \(v \). Then:

\[w_1 = w_1 + 0 = w_1 + (v + w_2) = (v + w_1) + w_2 = 0 + w_2 = w_2 \]

Now we can write \(-v\) as the additive inverse of \(v \) and define subtraction as \(v - w = v + (-w) \). On the other hand, we still don’t “know” that \(-1v = -v\)!

Notation: We have \(0_F \) and \(0_V \). In the previous two propositions we dealt with \(0_V \). Next we will handle \(0_F \). We just write 0 for either and use the context to determine the meaning.

Proposition 3. \(0_F v = 0_V \) for every \(v \in V \)

Proof.

\[0v = (0 + 0)v = 0v + 0v \implies 0v = 0 \]

Now the other way around...

Proposition 4. \(\lambda 0 = 0 \) for every \(\lambda \in F \)

Proposition 5. \((-1)v = -v \) for all \(v \in V \)

Proof.

\[v + (-1)v = 1v + (-1)v = (1 + (-1))v = 0v = 0 \]

Now use uniqueness of additive inverse.

End of Lecture 1