BEGINNING OF LECTURE 4

2.B Bases

\[\text{span} + \text{linear independence} = \text{basis}\]

Definition 13. \(v_1, \ldots, v_n \in V\) is a basis of \(V\) if \(\text{span}(v_1, \ldots, v_n) = V\) and \(v_1, \ldots, v_n\) are linearly independent.

Proposition 12. \(v_1, \ldots, v_n \in V\) is a basis of \(V\) if and only if
\[\forall \ v \in V, \ \exists! a_1, \ldots, a_n \in \mathbb{F} \text{ such that}\]
\[v = a_1 v_1 + \cdots + a_n v_n\]

The notion of a basis is **extremely important** because it allows us to define a **coordinate system** for our vector spaces!

Examples:

1. \((1, 0, \ldots, 0), (0, 1, 0, \ldots, 0), \ldots, (0, \ldots, 0, 1)\) is the **standard basis** of \(\mathbb{F}^n\).

2. \(1, z, \ldots, z^m\) is the standard basis for \(\mathcal{P}_m(\mathbb{F})\)

3. Let \(\mathbb{Z}_N = \{0, 1, \ldots, N - 1\}\) (with addition mod \(N\)) and let \(V = \{f : \mathbb{Z}_N \rightarrow \mathbb{C}\}\). The standard (time side) basis for \(V\) is \(\delta_0, \ldots, \delta_{N-1}\) where

\[\delta_k(n) = \begin{cases} 1 & n = k \\ 0 & n \neq k \end{cases}\]

Indeed,

\[f(n) = \sum_{k=0}^{N-1} f(k) \delta_k(n)\]

Fourier analysis tells us that another (frequency side) basis for \(V\) is \(e_0, \ldots, e_{N-1}\) where

\[e_k(n) = \frac{1}{\sqrt{N}} e^{2\pi i kn/N}\]

and

\[f(n) = \sum_{k=0}^{N-1} a_k e_k(n)\]
with
\[a_k = \hat{f}(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f(n)e^{-2\pi i kn/N} \]

The coefficients \(a_k\) define the function \(\hat{f}(k)\) which is the Fourier transform of \(f\).

If \(v_1, \ldots, v_n\) spans \(V\), it should have enough vectors to make a basis. Indeed:

Proposition 13. If \(\mathcal{L} = v_1, \ldots, v_n\) spans \(V\), then \(\mathcal{L}\) can be reduced to a basis.

Proof. If \(\mathcal{L}\) is linearly independent, then we are done. So assume it is not. We will selectively throw away vectors using the LDL.

Step 1: If \(v_1 = 0\) remove \(v_1\)
Step 2: If \(v_2 \in \text{span}(v_1)\), remove \(v_2\)
Step \(k\): If \(v_k \in \text{span}(v_1, \ldots, v_{k-1})\), remove \(v_k\)

Stop at Step \(n\), getting a new list \(\mathcal{L}^* = w_1, \ldots, w_m\). We still have \(\text{span}(\mathcal{L}^*) = V\) since we only discarded vectors that were in the span of other vectors. We also have the property:

\[w_k \notin \text{span}(w_1, \ldots, w_{k-1}), \quad \forall k > 1 \]

Thus by the contrapositive of LDL, \(\mathcal{L}^*\) is linearly independent, and hence a basis.

Corollary 1. If \(V\) is finite dimensional, it has a basis.

We just removed stuff from a spanning set to get a basis. We can also add stuff to a linearly independent set to get a basis.

Proposition 14. If \(\mathcal{L} = u_1, \ldots, u_m \in V\) is linearly independent, then \(\mathcal{L}\) can be extended to a basis.

Proof. Let \(w_1, \ldots, w_n\) be a basis of \(V\). Thus

\[\mathcal{L}^* = u_1, \ldots, u_m, w_1, \ldots, w_n \]

spans \(V\). Apply the procedure in the proof of Proposition 13, and note that none of the \(u\)'s get deleted [why?].
Now we show that every subspace U has a complementary subspace W that together direct sum to V.

Proposition 15. Suppose V is finite dimensional and that U is a subspace of V. Then there exists another subspace W such that $V = U \oplus W$.

Proof. V finite dimensional $\Rightarrow U$ finite dimensional $\Rightarrow U$ has a basis u_1, \ldots, u_m. By the previous proposition we can extend u_1, \ldots, u_m to a basis of V, say $\mathcal{L} = u_1, \ldots, u_m, w_1, \ldots, w_n$. We show that $W = \text{span}(w_1, \ldots, w_n)$ is the answer.

We need to show: (1) $V = U + W$, and (2) $U \cap W = \{0\}$. Since \mathcal{L} is a basis, for any $v \in V$ we have:

$$v = \sum_{u \in U} a_u u + \sum_{w \in W} b_w w = u + w \in U + W$$

Now suppose that $v \in U \cap W$. Then

$$v = a_1 u_1 + \cdots + a_m u_m = b_1 w_1 + \cdots + b_n w_n$$

which implies

$$a_1 u_1 + \cdots + a_m u_m - b_1 w_1 - \cdots - b_n w_n = 0$$

But \mathcal{L} is linearly independent so $a_1 = \cdots = a_m = b_1 = \cdots = b_n = 0$. \square

2.C Dimension

Since a basis gives a unique representation of each $v \in V$, we should be able to say that the number of vectors in basis is the dimension of V. But to do so, we need to make sure every basis of V has the same number of vectors. Indeed:

Theorem 2. Any two bases of a finite dimensional vector space have the same length.

Proof. Let $\mathcal{B}_1 = v_1, \ldots, v_m$ and $\mathcal{B}_2 = w_1, \ldots, w_n$ be two bases of V. Since \mathcal{B}_1 is linearly independent and \mathcal{B}_2 spans V, $m \leq n$. Flipping the roles of \mathcal{B}_1 and \mathcal{B}_2, we get $n \leq m$. \square
Definition 14. The dimension of V is the length of B for any basis B.

Proposition 16. If U is a subspace of V, then $\dim U \leq \dim V$

Examples:

1. $\dim \mathbb{F}^n = n$

 Remark: $\dim \mathbb{R}^2 = 2$ and $\dim \mathbb{C} = 1$, even though \mathbb{R}^2 can be identified with \mathbb{C}. The scalar field \mathbb{F} cannot be ignored when computing the dimension of V!

2. $\dim \mathcal{P}_m(\mathbb{F}) = m + 1$

Let $\mathcal{L} = v_1, \ldots, v_n$. If $\dim V = n$, then we need only check if \mathcal{L} is linearly independent OR if $\text{span}(\mathcal{L}) = V$ to conclude that \mathcal{L} is a basis for V.

Proposition 17. Suppose $\dim V = n$ and let $\mathcal{L} = v_1, \ldots, v_n$.

1. If \mathcal{L} is linearly independent, then \mathcal{L} is a basis

2. If $\text{span}(\mathcal{L}) = V$, then \mathcal{L} is a basis.

Proof. Use Proposition 14 for (1) and Proposition 13 for (2).

End of Lecture 4