Beginning of Lecture 5

Theorem 3. dim $V < \infty$, U_1 and U_2 subspaces of V. Then

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Proof. Proof will use 3 objects:

- 1. $\mathcal{B} = u_1, \ldots, u_m = \text{basis of } U_1 \cap U_2$
- 2. $\mathcal{L}_1 = v_1, \dots, v_j = \text{extension of } \mathcal{B} \text{ so that } \mathcal{B} \cup \mathcal{L}_1 = \text{basis for } U_1$
- 3. $\mathcal{L}_2 = w_1, \dots, w_k = \text{extension of } \mathcal{B} \text{ so that } \mathcal{B} \cap \mathcal{L}_2 = \text{basis for } U_2.$

We will show that $\mathcal{L} = \mathcal{B} \cup \mathcal{L}_1 \cup \mathcal{L}_2$ is a basis for $U_1 + U_2$. This will complete the proof since if it is true, then

$$\dim(U_1 + U_2) = m + j + k = (m + j) + (m + k) - m = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Clearly \mathcal{L} spans $U_1 + U_2$ since span(\mathcal{L}) contains both U_1 and U_2 .

Now we show linear independence. Suppose:

$$\sum_{i} a_i u_i + \sum_{l} b_l v_l + \sum_{p} c_p w_p = 0 \tag{3}$$

Then:

$$\sum_{p} c_p w_p = -\sum_{i} a_i u_i - \sum_{l} b_l v_l \in U_1$$

But $w_p \in U_2$ by assumption, so

$$\sum_{p} c_p w_p \in U_1 \cap U_2 \Rightarrow \sum_{p} c_p w_p = \sum_{q} d_q u_q \text{ for some } d_q$$

Now, $(u_1, \ldots, u_m, w_1, \ldots, w_k)$ is a basis for U_2 . Thus:

$$\sum_{p} c_{p} w_{p} - \sum_{q} d_{q} u_{q} = 0 \Rightarrow c_{p} = 0, d_{q} = 0, \ \forall p, q$$

Therefore (3) reduces to

$$\sum_{i} a_i u_i + \sum_{l} b_l v_l = 0$$

Repeat the previous argument.

3 Linear Maps

V, W always vector spaces.

3.A The Vector Space of Linear Maps

Definition 15. Let V, W be vector spaces over the same field \mathbb{F} . A function $T: V \to W$ is a linear map if it has the following two properties:

- 1. additivity: $T(u+v) = Tu + Tv, \ \forall u, v \in V$
- 2. homogeneity: $T(\lambda v) = \lambda(Tv) \ \forall \lambda \in \mathbb{F}, v \in V$

The set of all linear maps from V to W is denoted $\mathcal{L}(V, W)$.

Note: You could say T is linear if it "preserves the vector space structures of V and W."

Examples (read the ones in the book too!):

• Fix a point $x_0 \in \mathbb{R}$. Evaluation at x_0 is a linear map:

$$T: C(\mathbb{R}; \mathbb{R}) \to \mathbb{R}$$

 $Tv = v(x_0)$

• The <u>anti-derivative</u> is a linear map:

$$T: C(\mathbb{R}; \mathbb{R}) \to C^1(\mathbb{R}; \mathbb{R})$$
$$(Tv)(x) = \int_0^x v(y) \, dy$$

• Fix $b \in \mathbb{F}$. Define the <u>forward shift</u> operator as:

$$T: \mathbb{F}^{\infty} \to \mathbb{F}^{\infty}$$
$$T(v_1, v_2, v_3, \ldots) = (b, v_1, v_2, v_3, \ldots)$$

T is a linear map if and only if b = 0 [why?].

Next we show that we can always find a linear map that takes whatever values we want on a basis, and furthermore, that it is completely determined by these values.

Theorem 4. Let v_1, \ldots, v_n be a basis for V and let $w_1, \ldots, w_n \in W$. Then there exists a unique linear map $T: V \to W$ such that

$$Tv_k = w_k, \quad \forall k$$

Proof. Define $T: V \to W$ as

$$T(a_1v_1 + \cdots + a_nv_n) = a_1w_1 + \cdots + a_nw_n$$

Clearly $Tv_k = w_k$ for all k. It is easy to see that T is linear as well [see the book].

For uniqueness, let $S: V \to W$ be another linear map such that $Sv_k = w_k$ for all k. Then:

$$S(a_1v_1 + \dots + a_nv_n) = \sum_{k=1}^n S(a_kv_k) = \sum_{k=1}^n a_kSv_k = \sum_{k=1}^n a_kw_k = T(a_1v_1 + \dots + a_nv_n)$$

The previous theorem is elementary, but highlights the fact that amongst all the maps from V to W, linear maps are very special.

Theorem 5. $\mathcal{L}(V, W)$ is a vector space with the following vector addition and scalar multiplication operations:

- vector addition: $S, T \in \mathcal{L}(V, W), (S + T)(v) = Sv + Tv \ \forall v \in V$
- <u>scalar mult.</u>: $T \in \mathcal{L}(V, W), \ \lambda \in \mathbb{F}, \ (\lambda T)(v) = \lambda(Tv) \ \forall v \in V$

Theorem 6. $\mathcal{L}(V,W)$ is finite dimensional and

$$\dim \mathcal{L}(V, W) = (\dim V)(\dim W)$$

Proof. Suppose dim V = n and dim W = m and let

$$\mathcal{B}_V = v_1, \dots, v_n$$
$$\mathcal{B}_W = w_1, \dots, w_m$$

be bases for V and W respectively. Define the linear transform $E_{p,q}:V\to W$ as

$$E_{p,q}(v_k) = \begin{cases} 0 & k \neq q \\ w_p & k = q \end{cases}, \quad p = 1, \dots, m, \quad q = 1, \dots, n$$

By Theorem 4, this uniquely defines each $E_{p,q}$. We are going to show that these mn transformations $\{E_{p,q}\}_{p,q}$ form a basis for $\mathcal{L}(V,W)$.

Let $T: V \to W$ be a linear map. For each $1 \leq k \leq n$, let $a_{1,k}, \ldots, a_{m,k}$ be the coordinates of Tv_k in the basis \mathcal{B}_W :

$$Tv_k = \sum_{p=1}^m a_{p,k} w_p$$

To prove spanning, we wish to show that:

$$T = \sum_{p=1}^{m} \sum_{q=1}^{n} a_{p,q} E_{p,q}$$
 (4)

Let S be the linear map on the right hand side of (4). Then for each k,

$$Sv_k = \sum_{p} \sum_{q} a_{p,q} E_{p,q} v_k$$
$$= \sum_{p} a_{p,k} w_p$$
$$= Tv_k$$

So S = T, and since T was arbitrary, $\{E_{p,q}\}_{p,q}$ spans $\mathcal{L}(V, W)$.

To prove linear independence, suppose that

$$S = \sum_{p} \sum_{q} a_{p,q} E_{p,q} = 0$$

Then $Sv_k = 0$ for each k, so

$$\sum_{p} a_{p,k} w_p = 0, \quad \forall \, k$$

But w_1, \ldots, w_m are linearly independent, so $a_{p,k} = 0$ for all p and k.

END OF LECTURE 5