
Fall 2015 Math 414: Linear Algebra II

Beginning of Lecture 9

Example: Let D 2 L(P3(R),P2(R)) be the di↵erentiation operator, defined
by Dp = p

0. Let’s compute the matrix M(D) of D with respect to the
standard bases B3 = 1, x, x2, x3 of P3(R) and B2 = 1, x, x2 of P2(R). Since
Dx

n = (xn)0 = nx

n�1 we have:

M(D;B3,B2) =

0

@
0 1 0 0
0 0 2 0
0 0 0 3

1

A

Now lets consider a di↵erent basis for P3(R), for example B0
3 = 1 + x, x +

x

2
, x

2 + x

3
, x

3. Compute:

D(1 + x) = 1

D(x+ x

2) = 1 + 2x

D(x2 + x

3) = 2x+ 3x2

D(x3) = 3x2

Thus:

M(D;B0
3,B2) =

0

@
1 1 0 0
0 2 2 0
0 0 3 3

1

A

Now consider the specific polynomial p 2 P3(R),

p(x) = 2 + x+ 3x2 + 5x3 =) p

0(x) = 1 + 6x+ 15x2

The coordinates of p in B3 and B0
3, as well as p

0 in B2, are:

M(p;B3) =

0

BB@

2
1
3
5

1

CCA M(p;B0
3) =

0

BB@

2
�1
4
1

1

CCA M(p0;B2) =

0

@
1
6
15

1

A

Computing Dp in terms of matrix multiplication with respect to B3 and B2
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we should get back M(p0;B2); indeed:

M(Dp;B2) = M(D;B3,B2)M(p;B3)

=

0

@
0 1 0 0
0 0 2 0
0 0 0 3

1

A

0

BB@

2
1
3
5

1

CCA

=

0

@
1
6
15

1

A

= M(p0;B2)

We should also be able to compute Dp in terms of matrix multiplication but
with respect to B0

3 and B2 and still get back M(p0;B2); indeed:

M(Dp;B2) = M(D;B0
3,B2)M(p;B0

3)

=

0

@
1 1 0 0
0 2 2 0
0 0 3 3

1

A

0

BB@

2
�1
4
1

1

CCA

=

0

@
1
6
15

1

A

= M(p0;B2)

Remark: As we said earlier, the choice of bases determines the matrix rep-
resentation M(T ;B

V

,B
W

) of the linear map T 2 L(V,W ). Later on we will
prove important results about the choice of the bases the give the “nicest”
possible matrix representation of T .

Definition 26. A linear map T 2 L(V, V ) =: L(V ) is an operator.

Remark: For the matrix of an operator T 2 L(V ), we assume that we take
the same basis B

V

for both the domain V and the range V , and thus write
it as M(T ;B

V

) := M(T ;B
V

,B
V

). Furthermore, M(T ;B
V

) 2 Fn,n, where
dimV = n, and so we see that M(T ;B

V

) is a square matrix.

Theorem 10. Suppose V is finite dimensional and T 2 L(V ). Then the

following are equivalent:

29



Fall 2015 Math 414: Linear Algebra II

1. T is bijective (i.e., invertible)

2. T is surjective

3. T is injective

Remark: Not true if V is infinite dimensional!

Proof. We prove this by proving that 1 ) 2 ) 3 ) 1.
Clearly 1 ) 2 so that part is done.
Now suppose T is surjective, i.e., rangeT = V . Then by the Rank-Nullity
Theorem:

dimV = dimnullT + dim rangeT

) dimV = dimnullT + dimV

) dimnullT = 0

) nullT = {0}
) T is injective

So that takes care of 2 ) 3.
Now suppose T is injective. Then nullT = {0} and dimnullT = 0. Once
again use the Rank-Nullity Theorem:

dimV = dimnullT + dim rangeT

) dimV = 0 + dim rangeT

) rangeT = V

Thus T is surjective. Since we assumed it was injective, this means T is
bijective and so we have 3 ) 1 and we are done.

4 Polynomials

Read on your own!

5 Eigenvalues, Eigenvectors, and Invariant Sub-

spaces

Extremely important subject matter that is the heart of Linear Algebra and
is used all over mathematics, applied mathematics, data science, and more.
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For example, consider a graph G = (V , E) consisting of vertices V and edges
E ; for example see Figure 1. You can encode this graph with a 6⇥ 6 matrix

Figure 1: Graph with 6 vertices and 7 edges

L so that:

L

j,k

=

8
<

:

degree of vertex k, j = k

�1, j 6= k and there is an edge between vertices j and k

0, otherwise

This matrix is called the graph Laplacian and it encodes connectivity proper-
ties of the graph through its eigenvalues and eigenvectors. If the nodes in the
graph represent webpages, and the edges represent hyperlinks between the
webpages, then a similar type of matrix represents the world wide web, and
its eigenvectors and eigenvalues form the foundation of how Google computes
search results!

5.A Invariant Subspaces

At the beginning of the course we defined a structure on sets V through the
notion of a vector space. We then examined this structure further through
subspaces, bases, and related notions. We then extended our study through
linear maps between vector spaces, culminating in the Rank-Nullity Theo-
rem and the notion of an isomorphism between two vector spaces with the
same structure. Now we examine the structure of linear operators. The idea
is that we will study the structure of T 2 L(V ) by finding nice structural
decompositions of V relative to T .

Thought experiment: Let T 2 L(V ) and suppose

V = U1 � · · ·� U

m
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To understand T , we would need only understand T

k

= T |
Uk for each k =

1, . . . ,m. However, T
k

may not be in L(U
k

); indeed, T
k

might map U

k

to
some other part of V . This is a problem, since we would like each restricted
linear map T

k

to be an operator itself on the subspace U

k

. This leads us to
the following definition.

Definition 27. Suppose T 2 L(V ). A subspace U of V is invariant under T
if Tu 2 U for all u 2 U , i.e., T |

U

2 L(U).

Examples: {0}, V , nullT , rangeT

Must an operator have any invariant subspaces other than {0} and V ? We
will see... We begin with the study of one dimensional invariant subspaces.

End of Lecture 9
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