Beginning of Lecture 19

Theorem 19 (Triangle Inequality). Suppose \(u, v \in V \). Then:

\[
\|u + v\| \leq \|u\| + \|v\|,
\]

with equality if and only if \(u = cv \) for \(c \geq 0 \).

Proof. For the first part:

\[
\|u + v\|^2 = \langle u + v, u + v \rangle \\
= \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \langle v, u \rangle \\
= \langle u, u \rangle + \langle v, v \rangle + \langle u, v \rangle + \overline{\langle u, v \rangle} \\
= \|u\|^2 + \|v\|^2 + 2\text{Re}\langle u, v \rangle \\
\leq \|u\|^2 + \|v\|^2 + 2|\langle u, v \rangle| \\
\leq \|u\|^2 + \|v\|^2 + 2\|u\|\|v\| \quad \text{[Cauchy-Schwarz]} \\
= (\|u\| + \|v\|)^2
\]

The proof above shows that equality holds if and only if:

1. \(\text{Re}\langle u, v \rangle = |\langle u, v \rangle| \), and
2. \(|\langle u, v \rangle| = \|u\|\|v\| \)

From the Cauchy-Schwarz inequality, we know #2 holds if and only if \(u = cv \) for some \(c \in \mathbb{F} \). For #1, consider an arbitrary \(\lambda = a + ib \in \mathbb{C} \), where \(a, b \in \mathbb{R} \). Then \(\text{Re}\lambda = a \) and \(|\lambda| = \sqrt{a^2 + b^2} \), so \(\text{Re}\lambda = |\lambda| \) if and only if \(\lambda = a \geq 0 \). Thus #1 holds if and only if \(\langle u, v \rangle \geq 0 \), which combined with \(u = cv \), implies that equality holds if and only if \(c \geq 0 \).

The next result is the Parallelogram Equality, which also has a geometric interpretation in \(\mathbb{R}^2 \); see Figure 7.

Proposition 38. Suppose \(u, v \in V \). Then:

\[
\|u + v\|^2 + \|u - v\|^2 = 2(\|u\|^2 + \|v\|^2)
\]

Proof. Simply compute:

\[
\|u + v\|^2 + \|u - v\|^2 = \langle u + v, u + v \rangle + \langle u - v, u - v \rangle \\
= \|u\|^2 + \|v\|^2 + \langle u, v \rangle + \langle v, u \rangle + \|u\|^2 + \|v\|^2 - \langle u, v \rangle + \langle v, u \rangle \\
= 2(\|u\|^2 + \|v\|^2)
\]

\(\square\)
6. B Orthonormal Bases

Definition 41. A list of vectors $e_1, \ldots, e_m \in V$ is orthonormal if

$$\langle e_j, e_k \rangle = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}$$

where $\langle \cdot, \cdot \rangle$ is an inner product. The norm 1 and orthogonal conditions are satisfied.

where

$$\delta : \mathbb{Z} \to \mathbb{C}, \quad \delta(0) = 1 \text{ and } \delta(n) = 0, \quad \forall n \neq 0.$$

Examples:

1. The standard basis in \mathbb{F}^n

2. Recalls the vector space $V = \{ f : \mathbb{Z}_N \to \mathbb{C} \}$, where $\mathbb{Z}_N = \{0, \ldots, N - 1\}$, and the Fourier basis:

$$e_k : \mathbb{Z}_N \to \mathbb{C}, \quad e_k(n) = \frac{1}{\sqrt{N}} e^{2\pi i kn/N}.$$

Define an inner product on this vector space:

$$\langle f, g \rangle = \sum_{n=0}^{N-1} f(n) \overline{g(n)}$$
Now V is an inner product space and e_0, \ldots, e_{N-1} is an orthonormal list. We can verify this:

$$\langle e_j, e_k \rangle = \sum_{n=0}^{N-1} e_j(n) e_k(n)$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} e^{2\pi i jn/N} e^{-2\pi i k n/N}$$

$$= \frac{1}{N} \sum_{n=0}^{N-1} e^{2\pi i (j-k)n/N}$$

$$= \left\{ \begin{array}{ll}
\frac{1}{N} \sum_{n=0}^{N-1} 1 = \frac{1}{N} \cdot N = 1 & \text{if } j = k \\
\frac{1}{N} \cdot \frac{1 - (e^{2\pi i (j-k)/N})^N}{1 - e^{2\pi i (j-k)/N}} = \frac{1}{N} \cdot \frac{1 - e^{2\pi i (j-k)}}{1 - e^{2\pi i (j-k)/N}} = \frac{1}{N} \cdot \frac{1 - 1}{1 - e^{2\pi i (j-k)/N}} = 0 & \text{if } j \neq k
\end{array} \right.$$

Since e_0, \ldots, e_{N-1} is also a basis, we call it an orthonormal basis.

Definition 42. An **orthonormal basis** of V is an orthonormal list of vectors in V that is also a basis of V.

End of Lecture 19