BEGINNING OF LECTURE 26

The null space and range of T are related to the null space and range of T^* through the orthogonal complement, as we now prove.

Proposition 50. If $T \in \mathcal{L}(V, W)$, then:

1. $\text{null } T^* = (\text{range } T)^\perp$
2. $\text{range } T^* = (\text{null } T)^\perp$
3. $\text{null } T = (\text{range } T^*)^\perp$
4. $\text{range } T = (\text{null } T^*)^\perp$

Proof. We prove #1 first:

$$w \in \text{null } T^* \iff T^* w = 0 \iff \langle v, T^* w \rangle = 0, \quad \forall v \in V \iff \langle Tv, w \rangle = 0, \quad \forall v \in V \iff w \in (\text{range } T)^\perp$$

Thus $\text{null } T^* = (\text{range } T)^\perp$.

The rest now follow easily. Indeed, taking the orthogonal complement of both sides of #1 gives #4. Replacing T with T^* in #1 gives #3, and in number #4 gives #2.

We now relate the adjoint to matrices.

Definition 48. The conjugate transpose of an $m \times n$ matrix $A \in \mathbb{F}^{m,n}$ is the $n \times m$ matrix $A^\dagger \in \mathbb{F}^{n,m}$ defined as:

$$A^\dagger_{j,k} = \overline{A}_{k,j}, \quad \forall j = 1, \ldots, n, \quad k = 1, \ldots, m$$

Proposition 51. Let $T \in \mathcal{L}(V, W)$, $\mathcal{B}_V = e_1, \ldots, e_n$ be an ONB of V, and $\mathcal{B}_W = f_1, \ldots, f_m$ be an ONB of W (note: they must be orthonormal!!). Then:

$$\mathcal{M}(T^*; \mathcal{B}_W, \mathcal{B}_V) = \mathcal{M}(T; \mathcal{B}_V, \mathcal{B}_W)^\dagger$$
Proof. Let \(A = \mathcal{M}(T; \mathcal{B}_V, \mathcal{B}_W) \). Recall that \(A_{j,k} \) is defined by writing \(Te_k \) as a linear combinations of \(f_1, \ldots, f_m \):

\[
Te_k = \sum_{j=1}^{m} A_{j,k} f_j = \sum_{j=1}^{m} \langle Te_k, f_j \rangle w f_j \quad \Rightarrow \quad A_{j,k} = \langle Te_k, f_j \rangle w
\]

where the second equality follows since \(\mathcal{B}_W \) is an ONB.

Now let \(B = \mathcal{M}(T^*; \mathcal{B}_W, \mathcal{B}_V) \). Then \(B \) is defined as:

\[
T^* f_k = \sum_{j=1}^{n} B_{j,k} e_j = \sum_{j=1}^{n} \langle T^* f_k, e_j \rangle V e_j \quad \Rightarrow \quad B_{j,k} = \langle T^* f_k, e_j \rangle V
\]

But then:

\[
B_{j,k} = \langle T^* f_k, e_j \rangle = \overline{\langle e_j, T^* f_k \rangle} = \overline{\langle Te_j, f_k \rangle} = \overline{A_{k,j}} = A_{j,k}^\dagger
\]

Now we focus in on operators \(T \in \mathcal{L}(V) \), where \(V \) is an inner product space. We shall be particularly interested in the following operators.

Definition 49. An operator \(T \in \mathcal{L}(V) \) is **self-adjoint** if \(T = T^* \), i.e.,

\[
\langle Tv, w \rangle = \langle v, Tw \rangle, \quad \forall v, w \in V
\]

Remark: The previous proposition shows that for a general \(T \in \mathcal{L}(V) \), if \(\mathcal{B} \) is an ONB for \(V \), then \(\mathcal{M}(T^*; \mathcal{B}) = \mathcal{M}(T; \mathcal{B})^\dagger \). But if \(T \) is self-adjoint, then \(T = T^* \) and so \(\mathcal{M}(T; \mathcal{B}) = \mathcal{M}(T^*; \mathcal{B}) = \mathcal{M}(T; \mathcal{B})^\dagger \), which implies that \(\mathcal{M}(T; \mathcal{B}) \) is symmetric and real valued.

Proposition 52. The eigenvalues of self-adjoint operators are real valued (even when \(F = \mathbb{C} \)).

Proof. Let \(T \in \mathcal{L}(V) \) be self-adjoint, \(\lambda \in \mathbb{F} \) and eigenvalue of \(T \), and \(v \in V \) a corresponding nonzero eigenvector so that \(Tv = \lambda v \). Then:

\[
\lambda \|v\|^2 = \langle \lambda v, v \rangle = \langle Tv, v \rangle = \langle v, Tv \rangle = \langle v, \lambda v \rangle = \overline{\lambda} \|v\|^2 \Rightarrow \lambda = \overline{\lambda} \Rightarrow \lambda \in \mathbb{R}
\]
Proposition 53. Let \(V \) be a complex inner product space and \(T \in \mathcal{L}(V) \).

If \(\langle Tv, v \rangle = 0, \ \forall v \in V \), then \(T = 0 \)

Proof. Suppose \(\langle Tv, v \rangle = 0, \ \forall v \in V \). Let \(u, w \in V \) and consider the clever rewriting of \(\langle Tu, w \rangle \):

\[
\langle Tu, w \rangle = \frac{1}{4} \langle T(u + w), u + w \rangle - \frac{1}{4} \langle T(u - w), u - w \rangle \\
+ \frac{1}{4} \langle T(u + iw), u + iw \rangle i - \frac{1}{4} \langle T(u - iw), u - iw \rangle i \\
= \frac{1}{4} (\langle Tv_1, v_1 \rangle + \langle Tv_2, v_2 \rangle + \langle Tv_3, v_3 \rangle i + \langle Tv_4, v_4 \rangle i) \\
= 0
\]

Thus \(\langle Tu, w \rangle = 0, \ \forall u, w \in V \). Taking \(w = Tu \), we get \(\|Tu\|^2 = 0, \ \forall u \in V \), which implies that \(Tu = 0 \) for all \(u \in V \), and so \(T = 0 \). \(\square \)

Remark: False if \(\mathbb{F} = \mathbb{R} \). Take \(V = \mathbb{R}^2 \) and \(T \) to be a 90-degree rotation.

Proposition 54. Suppose \(V \) is a complex inner product space and \(T \in \mathcal{L}(V) \). Then:

\(T \) is self-adjoint \(\iff \langle Tv, v \rangle \in \mathbb{R}, \ \forall v \in V \)

Proof. Let \(v \in V \), then:

\[
\langle Tv, v \rangle - \overline{\langle Tv, v \rangle} = \langle Tv, v \rangle - \langle v, Tv \rangle = \langle Tv, v - \langle T^*v, v \rangle \rangle = \langle (T - T^*)v, v \rangle \quad (15)
\]

If \(\langle Tv, v \rangle \in \mathbb{R} \), then by (15):

\[
0 = \langle (T - T^*)v, v \rangle \implies T - T^* = 0 \ [\text{by previous Proposition}] \implies T = T^*
\]

Conversely, if \(T \) is self-adjoint then (15) also implies:

\[
\langle Tv, v \rangle - \overline{\langle Tv, v \rangle} = 0 \implies \langle Tv, v \rangle = \overline{\langle Tv, v \rangle} \implies \langle Tv, v \rangle \in \mathbb{R}
\]

Remark: Also false if \(\mathbb{F} = \mathbb{R} \) since \(\langle Tv, v \rangle \in \mathbb{R} \) for all \(T \in \mathcal{L}(V) \), including those that are not self-adjoint.

End of Lecture 26