BEGINNING OF LECTURE 29

Warmup: If we change \(F = \mathbb{R} \), where does the proof of the Complex Spectral Theorem fall apart?

Answer: To prove \((1) \implies (3)\) we used Schur’s Theorem, which only applies to complex vector spaces.

Real Spectral Theorem

We now aim to prove the Real Spectral Theorem:

Theorem 28 (Real Spectral Theorem). Suppose \(F = \mathbb{R} \) and \(T \in \mathcal{L}(V) \). Then the following are equivalent:

1. \(T \) is self-adjoint
2. \(V \) has an ONB consisting of eigenvectors of \(T \)
3. \(T \) has a diagonal matrix with respect to some ONB of \(V \)

The Real Spectral Theorem is harder to prove and as such we will first need some preliminary results.

Consider the quadratic polynomial \(p \in \mathcal{P}_2(\mathbb{R}) \):

\[
p(x) = x^2 + bx + c, \quad x, b, c \in \mathbb{R}
\]

Note the following:

If \(b^2 < 4c \), then

\[
x^2 + bx + c = \left(x + \frac{b}{2} \right)^2 + \left(c - \frac{b^2}{4} \right) > 0, \quad \forall x \in \mathbb{R}
\]

In particular \(p(x) > 0 \) so it has a multiplicative inverse for all \(x \in \mathbb{R} \), namely \(p(x) \cdot (1/p(x)) = 1 \). A similar type of reasoning leads to the following result.

Proposition 58. If \(T \in \mathcal{L}(V) \) is self-adjoint and \(b, c \in \mathbb{R} \) satisfy \(b^2 < 4c \), then

\[
p(T) = T^2 + bT + cI
\]

is invertible.
Proof. Let \(v \in V, v \neq 0 \). Then:

\[
\langle p(T)v, v \rangle = \langle (T^2 + bT + cI)v, v \rangle \\
= \langle T^2v, v \rangle + b \langle Tv, v \rangle + c \langle v, v \rangle \\
= \langle Tv, Tv \rangle + b \langle Tv, v \rangle + c \|v\|^2 \\
\geq \|Tv\|^2 - |b|\|Tv\|\|v\| + c \|v\|^2 \quad \text{[Cauchy-Schwarz]} \\
= \left(\|Tv\| - \frac{|b|\|v\|}{2}\right)^2 + \left(c - \frac{b^2}{4}\right)\|v\|^2 \\
> 0
\]

Thus \(p(T)v \neq 0 \implies p(T) \) is injective, and hence invertible. \(\square \)

End of Lecture 29