BEGINNING OF LECTURE 31

7.C Positive Operators and Isometries

Positive Operators

Definition 51. An operator $T \in \mathcal{L}(V)$ is \underline{positive} if T is self-adjoint and

$$\forall v \in V, \quad \langle Tv, v \rangle \geq 0.$$

Examples:

1. Orthogonal projections P_U (when U is a subspace of V)

2. T self-adjoint and $b, c \in \mathbb{R}$ such that $b^2 < 4c$, then $T^2 + bT + cI$ is a positive operator (see our proof proving that $T^2 + bT + cI$ is invertible)

Definition 52. An operator R is the \underline{square root} of an operator T if $R^2 = T$.

Example: Suppose $T \in \mathcal{L}(\mathbb{R}^2)$ is a rotation by the angle $\theta \in [0, 2\pi)$, i.e.,

$$T = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

If R is a rotation by $\theta/2$,

$$R = \begin{pmatrix} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix}$$

then $R^2 = T$.

Positive operators mimic the numbers $[0, \infty)$. The next two theorems formalize this statement.

Theorem 30. Let $T \in \mathcal{L}(V)$. Then the following are equivalent:

1. T is positive

2. T is self-adjoint and all eigenvalues of T are nonnegative

3. T has a positive square root

89
4. \(T \) has a self-adjoint square root

5. There exists an operator \(R \in \mathcal{L}(V) \) such that \(T = R^*R \)

Proof. The plan is: (1) \(\Rightarrow \) (2) \(\Rightarrow \) (3) \(\Rightarrow \) (4) \(\Rightarrow \) (5) \(\Rightarrow \) (1).

- (1) \(\Rightarrow \) (2): By definition \(T \) is self-adjoint. So let \(\lambda \) be an eigenvalue of \(T \) with eigenvector \(v \) (recall this means \(v \neq 0 \)). Then:
 \[
 0 \geq \langle Tv, v \rangle = \langle \lambda v, v \rangle = \lambda \langle v, v \rangle = \lambda \|v\|^2 \Rightarrow \lambda \geq 0
 \]

- (2) \(\Rightarrow \) (3): Since \(T \) is self-adjoint, by The Spectral Theorem there is an ONB \(e_1, \ldots, e_n \) of \(V \) consisting of eigenvectors of \(T \); let \(\lambda_1, \ldots, \lambda_n \) be the corresponding eigenvalues. By assumption each \(\lambda_k \geq 0 \). Define \(R \in \mathcal{L}(V) \) by defining it on \(e_1, \ldots, e_n \):
 \[
 Re_k = \sqrt{\lambda_k}e_k
 \]
 We claim that \(R \) is a positive operator and that \(R^2 = T \). The second point is clear since:
 \[
 R^2e_k = \lambda_k e_k = Te_k, \forall k = 1, \ldots, n
 \]
 Thus \(R^2 \) and \(T \) agree on a basis and so they must be the same operator.

 Furthermore \(R \) is positive since:
 \[
 \langle Rv, v \rangle = \left\langle R \left(\sum_{j=1}^{n} \langle v, e_j \rangle e_j \right), \sum_{k=1}^{n} \langle v, e_k \rangle e_k \right\rangle = \left\langle \sum_{j=1}^{n} \langle v, e_j \rangle Re_j, \sum_{k=1}^{n} \langle v, e_k \rangle e_k \right\rangle
 \]
 \[
 = \sum_{j=1}^{n} \sum_{k=1}^{n} \langle \langle v, e_j \rangle Re_j, \langle v, e_k \rangle e_k \rangle
 \]
 \[
 = \sum_{j=1}^{n} \sum_{k=1}^{n} \langle v, e_j \rangle \overline{\langle v, e_k \rangle} \langle Re_j, e_k \rangle
 \]
 \[
 = \sum_{j=1}^{n} \sum_{k=1}^{n} \langle v, e_j \rangle \overline{\langle v, e_k \rangle} \sqrt{\lambda_j} e_j, e_k
 \]
 \[
 = \sum_{j=1}^{n} \sum_{k=1}^{n} \langle v, e_j \rangle \overline{\langle v, e_k \rangle} \sqrt{\lambda_j} \langle e_j, e_k \rangle
 \]
 \[
 = \sum_{j=1}^{n} \sqrt{\lambda_j} \cdot |\langle v, e_j \rangle|^2 \geq 0
 \]
• (3) ⇒ (4): By definition

• (4) ⇒ (5): (4) means that $T = R^2$ and $R = R^*$. Thus: $T = R^2 = RR = R^*R$.

• (5) ⇒ (1): We need to show T is self-adjoint and $\langle Tv, v \rangle \geq 0$ for all $v \in V$. For the first part,

$$T^* = (R^*R)^* = R^*(R^*)^* = R^*R = T$$

For the second part,

$$\langle Tv, v \rangle = \langle R^*Rv, v \rangle = \langle Rv, Rv \rangle = \|Rv\|^2 \geq 0, \ \forall v \in V$$

\[\square \]

Theorem 31. Every positive operator has a unique positive square root.

Proof. Suppose $T \in \mathcal{L}(V)$ is positive. Since T is self-adjoint, by The Spectral Theorem it has an ONB B of eigenvectors. Let $v \in B$ be one of these eigenvectors, and let λ be its associated eigenvalue so that $Tv = \lambda v$. By the previous theorem $\lambda \geq 0$ and T has a positive square root, say R. We will prove that $Rv = \sqrt{\lambda}v$. Thus R will be uniquely determined on the basis B, which means that it is the unique positive square root of T.

Now we prove that $Rv = \sqrt{\lambda}v$. Since R is positive, and hence self-adjoint, The Spectral Theorem implies that there exists an ONB e_1, \ldots, e_n of V consisting of eigenvectors of R. Let η_1, \ldots, η_n be the corresponding eigenvalues; because R is also positive, we know from the previous theorem that $\eta_k \geq 0$ for all k. Define $\lambda_k = \eta_k^2$; then $\sqrt{\lambda_k} = \eta_k$ and

$$Re_k = \sqrt{\lambda_k}e_k$$

Since e_1, \ldots, e_n is an ONB, we can write

$$v = \sum_{k=1}^{n} \langle v, e_k \rangle e_k$$

Thus:

$$Rv = \sum_{k=1}^{n} \langle v, e_k \rangle \sqrt{\lambda_k} e_k \implies R^2v = \sum_{k=1}^{n} \langle v, e_k \rangle \lambda_k e_k$$
But $R^2 = T$ and $Tv = \lambda v$, so $R^2v = Tv = \lambda v$ which implies:

$$\sum_{k=1}^{n} \langle v, e_k \rangle \lambda_k e_k = \sum_{k=1}^{n} \langle v, e_k \rangle \lambda e_k \implies \sum_{k=1}^{n} \langle v, e_k \rangle (\lambda - \lambda_k) e_k = 0$$

$$\implies \langle v, e_k \rangle (\lambda - \lambda_k) = 0, \quad \forall k = 1, \ldots, n$$

Hence either $\langle v, e_k \rangle = 0$ or $\lambda = \lambda_k$ for each k; thus:

$$v = \sum_{\{k : \lambda_k = \lambda\}} \langle v, e_k \rangle e_k \implies Rv = \sum_{\{k : \lambda_k = \lambda\}} \langle v, e_k \rangle \sqrt{\lambda_k} e_k$$

$$= \sqrt{\lambda} \sum_{\{k : \lambda_k = \lambda\}} \langle v, e_k \rangle e_k = \sqrt{\lambda} v$$

\[\square \]

End of Lecture 31