Beginning of Lecture 34

7.D Polar Decomposition and Singular Value Decomposition

Polar Decomposition

First we recall the polar form of a complex number $z \in \mathbb{C}$. Let z = x + iy. Every complex number z can also be written in polar form as:

$$z = re^{i\theta}, \quad r \ge 0, \ \theta \in [0, 2\pi),$$

where

$$r = x^{2} + y^{2}$$
$$x = r \cos \theta$$
$$y = r \sin \theta$$

Note that in the polar formulation, r is nonnegative (and positive if $z \neq 0$), and $|e^{i\theta}| = 1$. We are going prove a <u>polar decomposition</u> for operators $T \in \mathcal{L}(V)$, using the analogy:

$$r \ge 0 \longleftrightarrow \text{ positive operators}$$

 $e^{i\theta} \longleftrightarrow \text{ isometries}$

First, recall that $R \in \mathcal{L}(V)$ is a square root of $T \in \mathcal{L}(V)$ if $R^2 = T$, and if T is a positive operator then T has a unique positive square root.

Notation: If T is a positive operator, let \sqrt{T} denote the unique positive square root of T.

Second, recall from HW9, 7.C, #4, that for any $T \in \mathcal{L}(V, W)$, $T^*T \in \mathcal{L}(V)$ and $TT^* \in \mathcal{L}(W)$ are positive operators, and thus have unique positive square roots.

Theorem 35 (Polar Decomposition Theorem). If $T \in \mathcal{L}(V)$, then there exists an isometry $S \in \mathcal{L}(V)$ such that

$$T = S\sqrt{T^*T}$$

Proof. Define a function S_1 : range $\sqrt{T^*T} \to \text{range } T$ as:

$$S_1(\sqrt{T^*T}v) = Tv$$

An outline of the proof is:

- 1. Show S_1 is well defined and linear
- 2. Extend S_1 to an isometry $S \in \mathcal{L}(V)$ such that $T = S\sqrt{T^*T}$.

To show S_1 is well defined, first we show:

$$||Tv|| = ||\sqrt{T^*T}v||, \quad \forall v \in V$$

$$\tag{18}$$

Indeed,

$$||Tv||^2 = \langle Tv, Tv \rangle$$

$$= \langle T^*Tv, v \rangle$$

$$= \langle \sqrt{T^*T}\sqrt{T^*T}v, v \rangle$$

$$= \langle \sqrt{T^*T}v, \sqrt{T^*T}v \rangle \text{ [recall positive operators are self-adjoint]}$$

$$= ||\sqrt{T^*T}v||^2$$

Now to show S_1 is well defined, suppose that $\sqrt{T^*T}v_1 = \sqrt{T^*T}v_2$; we must show that $Tv_1 = Tv_2$. We have:

$$||Tv_1 - Tv_2|| = ||T(v_1 - v_2)||$$

$$= ||\sqrt{T^*T}(v_1 - v_2)|| \text{ [by (18)]}$$

$$= ||\sqrt{T^*T}v_1 - \sqrt{T^*T}v_2||$$

$$= 0$$

You should verify on your own that S_1 is linear. That completes part 1.

Now we extend $S_1 \in \mathcal{L}(\text{range }\sqrt{T^*T}, \text{range }T)$ so an isometry $S \in \mathcal{L}(V)$ such that $T = S\sqrt{T^*T}$. First note that by (18) and the definition of S_1 , we have:

$$||S_1 u|| = ||u||, \quad \forall u \in \text{range } \sqrt{T^*T}$$

Note this implies that S_1 is injective since only 0 maps to 0. Thus:

 $\dim \operatorname{range} \sqrt{T^*T} = \dim \operatorname{range} T \Rightarrow \dim (\operatorname{range} \sqrt{T^*T})^{\perp} = \dim (\operatorname{range} T)^{\perp}$

Let e_1, \ldots, e_m be an ONB for $(\text{range }\sqrt{T^*T})^{\perp}$ and let f_1, \ldots, f_m be an ONB for $(\text{range }T)^{\perp}$. Note, both ONBs have the same length! Define a second linear map $S_2: (\text{range }\sqrt{T^*T})^{\perp} \to (\text{range }T)^{\perp}$ by

$$S_2\left(\underbrace{\sum_{k=1}^m a_k e_k}_{w}\right) = \underbrace{\sum_{k=1}^m a_k f_k}_{S_2w}$$

Since e_1, \ldots, e_m and f_1, \ldots, f_m are ONBs, by the definition of S_2 it is clear that

$$\forall w \in (\text{range } \sqrt{T^*T})^{\perp}, \quad ||S_2w|| = ||w||$$

Since:

$$V = \operatorname{range} \sqrt{T^*T} \oplus (\operatorname{range} \sqrt{T^*T})^{\perp}$$

we have for each $v \in V$,

$$v = u + w$$
, $u \in \text{range } \sqrt{T^*T}$, $w \in (\text{range } \sqrt{T^*T})^{\perp}$ $[u, w \text{ are unique}]$

Thus we can define $S \in \mathcal{L}(V)$ as:

$$S(v) = S(u+w) = S_1 u + S_2 w$$

Then for each $v \in V$,

$$S\sqrt{T^*T}v = S(\sqrt{T^*T}v) = S(\sqrt{T^*T}v + 0) = S_1(\sqrt{T^*T}v) + S_2(0) = Tv + 0 = Tv$$

and so $T = S\sqrt{T^*T}$.

Finally, we need to show that S is an isometry, i.e., it preserves norms:

$$||Sv||^2 = ||S_1u + S_2w||^2 = ||S_1u||^2 + ||S_2w||^2 = ||u||^2 + ||w||^2 = ||v||^2$$

Thus we can decompose any operator T into two very nice operators: an isometry and a positive operator. Furthermore, when $\mathbb{F} = \mathbb{C}$, our Spectral Theory tells us that there exists an ONB \mathcal{B}_1 such that $\mathcal{M}(S; \mathcal{B}_1)$ is diagonal and another ONB \mathcal{B}_2 such that $\mathcal{M}(\sqrt{T^*T}; \mathcal{B}_2)$ is diagonal. Unfortunately in general $\mathcal{B}_1 \neq \mathcal{B}_2$!

END OF LECTURE 34