
Fall 2015 Math 414: Linear Algebra II

Beginning of Lecture 34

7.D Polar Decomposition and Singular Value Decompo-

sition

Polar Decomposition

First we recall the polar form of a complex number z 2 C. Let z = x + iy.
Every complex number z can also be written in polar form as:

z = re

i✓

, r � 0, ✓ 2 [0, 2⇡),

where

r = x

2 + y

2

x = r cos ✓

y = r sin ✓

Note that in the polar formulation, r is nonnegative (and positive if z 6= 0),
and |ei✓| = 1. We are going prove a polar decomposition for operators T 2
L(V ), using the analogy:

r � 0 ! positive operators

e

i✓  ! isometries

First, recall that R 2 L(V ) is a square root of T 2 L(V ) if R2 = T , and if T
is a positive operator then T has a unique positive square root.

Notation: If T is a positive operator, let
p
T denote the unique positive square

root of T .

Second, recall from HW9, 7.C, #4, that for any T 2 L(V,W ), T ⇤T 2 L(V )
and TT

⇤ 2 L(W ) are positive operators, and thus have unique positive square
roots.

Theorem 35 (Polar Decomposition Theorem). If T 2 L(V ), then there exists
an isometry S 2 L(V ) such that

T = S

p
T

⇤
T
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Proof. Define a function S1 : range
p
T

⇤
T ! rangeT as:

S1(
p
T

⇤
Tv) = Tv

An outline of the proof is:

1. Show S1 is well defined and linear

2. Extend S1 to an isometry S 2 L(V ) such that T = S

p
T

⇤
T .

To show S1 is well defined, first we show:

kTvk = k
p
T

⇤
Tvk, 8 v 2 V (18)

Indeed,

kTvk2 = hTv, Tvi
= hT ⇤Tv, vi
= h
p
T

⇤
T

p
T

⇤
Tv, vi

= h
p
T

⇤
Tv,

p
T

⇤
Tvi [recall positive operators are self-adjoint]

= k
p
T

⇤
Tvk2

Now to show S1 is well defined, suppose that
p
T

⇤
Tv1 =

p
T

⇤
Tv2; we must

show that Tv1 = Tv2. We have:

kTv1 � Tv2k = kT (v1 � v2)k
= k
p
T

⇤
T (v1 � v2)k [by (18)]

= k
p
T

⇤
Tv1 �

p
T

⇤
Tv2k

= 0

You should verify on your own that S1 is linear. That completes part 1.

Now we extend S1 2 L(range
p
T

⇤
T , rangeT ) so an isometry S 2 L(V ) such

that T = S

p
T

⇤
T . First note that by (18) and the definition of S1, we have:

kS1uk = kuk, 8 u 2 range
p
T

⇤
T

Note this implies that S1 is injective since only 0 maps to 0. Thus:

dim range
p
T

⇤
T = dim rangeT ) dim(range

p
T

⇤
T )? = dim(rangeT )?
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Let e1, . . . , em be an ONB for (range
p
T

⇤
T )? and let f1, . . . , fm be an ONB

for (rangeT )?. Note, both ONBs have the same length! Define a second linear
map S2 : (range

p
T

⇤
T )? ! (rangeT )? by

S2

0

BBB@

mX

k=1

a

k

e

k

| {z }
w

1

CCCA
=

mX

k=1

a

k

f

k

| {z }
S2w

Since e1, . . . , em and f1, . . . , fm are ONBs, by the definition of S2 it is clear
that

8w 2 (range
p
T

⇤
T )?, kS2wk = kwk

Since:
V = range

p
T

⇤
T � (range

p
T

⇤
T )?

we have for each v 2 V ,

v = u+ w, u 2 range
p
T

⇤
T , w 2 (range

p
T

⇤
T )? [u, w are unique]

Thus we can define S 2 L(V ) as:

S(v) = S(u+ w) = S1u+ S2w

Then for each v 2 V ,

S

p
T

⇤
Tv = S(

p
T

⇤
Tv) = S(

p
T

⇤
Tv+0) = S1(

p
T

⇤
Tv)+S2(0) = Tv+0 = Tv

and so T = S

p
T

⇤
T .

Finally, we need to show that S is an isometry, i.e., it preserves norms:

kSvk2 = kS1u+ S2wk2 = kS1uk2 + kS2wk2 = kuk2 + kwk2 = kvk2

Thus we can decompose any operator T into two very nice operators: an
isometry and a positive operator. Furthermore, when F = C, our Spectral
Theory tells us that there exists an ONB B1 such that M(S;B1) is diagonal
and another ONB B2 such that M(

p
T

⇤
T ;B2) is diagonal. Unfortunately in

general B1 6= B2!
End of Lecture 34
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