
Fall 2015 Math 414: Linear Algebra II

Beginning of Lecture 38

Let T 2 L(V,W ) and recall the singular value decomposition of T :

• �1, . . . , �n the singular values of T with �1, . . . , �r the nonzero singular
values.
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If T 2 L(V ) then f1, . . . , fr 2 V . In this case:
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Nevertheless the SVD is still very useful! Indeed, the SVD tells us a lot about
the “metric properties” of a linear transformation.

Computational Remark: The SVD requires finding the eigenvalues and eigen-
vectors of T ⇤

T . In general computing eigenvalues of an operator (matrix) is
hard, but for self-adjoint operators (like T

⇤
T ) there are algorithms that can

do it very e↵ectively. This will be good to keep in mind, even though we will
not say any more on the subject.

Application 1: Image of the unit ball

Let T 2 L(Rn

,Rm) and let

B = {x 2 Rn : kxk  1}
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be the closed unit ball. We want to describe the shape of B after it is trans-
formed by T , i.e., we want to know what T (B) looks like.

Suppose first that T 2 L(Rn) and T takes a diagonal form, i.e., ẽ1, . . . , ẽn
with

ẽ

k

= (0, . . . , 0, 1|{z}
k

, 0, . . . , 0)

are eigenvectors of T with eigenvalues �1, . . . , �n, each �

k

> 0, so that in
particular for any v = (v1, . . . , vn) 2 Rn,

Tx = T (x1, . . . , xn) = (�1x1, . . . , �nxn)

Therefore, if y = (y1, . . . , yn) 2 Rn, then
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Indeed, T (x1, . . . , xn) = (�1x1, . . . , �nxn) = (y1, . . . , yn) if and only if y
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The set of points satisfying (21) is called an ellipsoid. In R2 it is an ellipse
(with its interior) with half-axes �1 and �2 [draw a picture]. The vectors
ẽ1, . . . , ẽn defined above as the standard ONB of Rn are the principal axes.

Now consider T 2 L(V ) with singular values �1, . . . , �n and �

k

> 0 for each
k = 1, . . . , n. Let e1, . . . , en 2 Rn and f1, . . . , fn 2 Rn be the two ONBs
associated to the SVD of T so that
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Note that:

x 2 B , kxk  1 , kxk2  1 ,
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We also have:
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But that is also an ellipsoid! It is just rotated so that its principal axes are
f1, . . . , fn.

Now consider the fully general case of T 2 L(Rn

,Rm) with nonzero singular
values �1, . . . , �r. We have:
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Notice this implies that rangeT = span(f1, . . . , fr). In particular,

y = Tx for x 2 Rn , y 2 rangeT , y 2 span(f1, . . . , fr)

Now we can use essentially the same calculation as before to get:
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Thus we have shown:

Theorem 37. The image T (B) of the closed unit ball B is an ellipsoid in
rangeT with half axes �1, . . . , �r along the principal axes f1, . . . , fr, where
�1, . . . , �r are the nonzero singular values of T and f

k

:= (1/�
k

)Te
k

with
e1, . . . , en an ONB of V consisting of eigenvectors of T ⇤

T .

End of Lecture 38
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