Deep Wavelet Scattering for Quantum Energy Regression

2016 March APS Meeting
Predicting and Classifying Materials via High-Throughput Databases and Machine Learning I

Matthew Hirn
Michigan State University
Department of Computational Mathematics, Science & Engineering
Department of Mathematics
Collaborators

Stéphane Mallat

Nicolas Poilvert
What do we want to do?

Molecule

\[x = \{ \text{charges, positions} \} = \{(z_k, r_k)\}_k \]

\[f(x) = E_0(x) + \sum_{k>l} \frac{z_k z_l}{|r_k - r_l|} \]

Ground state energy

Energy from quantum electron interactions
Why do we want to do it?

Google of molecules

Materials design

Drug discovery
So what’s the problem?

\[f(x) = E_0(x) + \sum_{k > l} \frac{z_k z_l}{|r_k - r_l|} \]

Schrödinger equation

\[H[x] \Psi_0[x] = E_0(x) \Psi_0[x] \]

Quantum mechanical (QM) approaches:

- Direct attacks (very small systems)
- Wave-function methods (small systems)
- Density functional theory (larger systems)

Not this

Fast multipole methods

(Greengard, Rokhlin)

\[O(N^\beta), \quad \beta \geq 3 \]

computational cost

\[N = \# \text{ electrons} \]
Recent idea: Interpolation from known samples

- Use QM to compute training samples \(\{(x_i, f(x_i))\}\) \(i \leq n\)
- Interpolate \(f(x) \) from the training samples

Issue: Curse of dimensionality

- \(\epsilon \) accuracy requires \(O(\epsilon^{-d}) \) samples
- \(d = \text{dimension} = O(\# \text{atoms}) \)
Recent idea: Interpolation from known samples

- Use QM to compute training samples \(\{(x_i, f(x_i))\}_{i \leq n} \)
- Interpolate \(f(x) \) from the training samples

Issue: Curse of dimensionality

- \(\epsilon \) accuracy requires \(O(\epsilon^{-d}) \) samples
- \(d = \text{dimension} = O(\# \text{atoms}) \)

Need to take advantage of **invariants** and **regularity** of \(f \)
Energy invariants and regularity

- **Permutation invariance**
 Invariant to permutations of the atom index k

- **Isometry invariance**
 Invariant to translations, rotations and reflections

- **Deformation stability**
 Lipschitz stable to diffeomorphisms of the molecule

$(\text{Bartók, Kondor, Csányi})$

\[
f(x) = E_0(x) + \sum_{k>l} \frac{z_k z_l}{|r_k - r_l|}
\]
Regression over a dictionary

- New representation of the molecule x:
 $$\Phi(x) = (\phi_k(x))_k$$

- Linear regression (interpolation) of f using Φ:
 $$\tilde{f}(x) = \langle w, \Phi(x) \rangle = \sum_k w_k \phi_k(x)$$

- Weights $(w_k)_k$ learned from the training data

(Bartók, Kondor, Csányi: SOAP kernels)
(Rupp, Tkatchenko, Müller, von Lilienfeld: Coulomb matrices)
(And many others...)
Dictionary properties

\[\tilde{f}(x) = \langle w, \Phi(x) \rangle = \sum_k w_k \phi_k(x) \]

The dictionary \(\Phi \) should:

- Have the same invariants and regularity as \(f \)
 - permutation invariance
 - isometry invariance
 - deformation stability

- Span a large enough space to approximate \(f \) to high accuracy, with as few terms as possible

\[\|w\|_0 \leq M \]
Dictionary structure

Decompose Φ as:

$$\Phi(x) = \Theta \rho[x], \quad x = \{(z_k, r_k)\}_k$$

- Isometry invariant
- Lipschitz stable to diffeomorphisms
- $\rho[x] : \mathbb{R}^3 \to \mathbb{R}$
- Permutation invariant
- Isometry covariant

This part is the main difficulty
Non-interacting density

\[\rho[x](u) = \sum_k \rho[z_k](u - r_k), \quad x = \{(z_k, r_k)\}_k \]

Candidates for \(\rho[z_k] \):

- \(\rho[z_k] = z_k \delta \)
- \(\rho[z_k] = \text{Isolated atomic density} \)
 \[= \rho_{\text{cor}}[z_k] + \rho_{\text{val}}[z_k] \]
- \(\rho[z_k] = (\rho_{\text{cor}}[z_k], \rho_{\text{val}}[z_k]) \)

core

valence
Fourier and autocorrelation

Dictionary $\Phi = \Theta \rho$

Now we focus on Θ; recall goals:

- Isometry invariant (translations, rotations, reflections)
- Stable to deformations

"Classic" translation invariant representations:

- **Autocorrelation:** $\Theta \rho(\tau) = \int \rho(u) \rho(u - \tau) \, du$
- **Fourier modulus:** $\hat{\Theta} \rho(\omega) = |\hat{\rho}(\omega)|^2$

Integrate over rotations to obtain isometry invariance
Invariant Fourier operator:

\[
\hat{\Theta} \rho(\alpha) = \|\hat{\rho}_\alpha\|_2^2 = \int_{S^2} |\hat{\rho}(\alpha \eta)|^2 \, d\eta
\]

\[
\omega = \alpha \eta, \ (\alpha, \eta) \in \mathbb{R}^+ \times S^2
\]

Pros:

- Isometry invariant
- Diagonalizes Coulomb:

\[
U(\rho) = \int \int \frac{\rho(u) \rho(v)}{|u - v|} \, du \, dv = \frac{1}{2\pi^2} \int_0^\infty \alpha^{-2} \|\hat{\rho}_\alpha\|_2^2 \, d\alpha
\]
Fourier and autocorrelation

Invariant Fourier operator:

\[\widehat{\Theta} \rho(\alpha) = \| \widehat{\rho}_\alpha \|^2 = \int_{S^2} |\widehat{\rho}(\alpha \eta)|^2 \, d\eta \]

\[\omega = \alpha \eta, \ (\alpha, \eta) \in \mathbb{R}^+ \times S^2 \]

Cons:

• Not sparse: \(U(\rho) = \sum_{k=1}^{\varepsilon^{-2}} w_k \| \widehat{\rho}_{k\varepsilon} \|^2 + O(\varepsilon) \)

• Not stable to deformations:

Invariant autocorrelation:

– Bumps located at \(\{|r_k - r_l|\}_{k,l} \)

– \(\Delta \) sized diffeomorphism moves them \(\Delta |r_k - r_l| \) distance

\[|r_k - r_l| \gg 0 \]
Wavelets

- Wavelet $\psi(u) = e^{-|u|^2} (e^{i\eta_0 \cdot u} - C)$, $\int \psi = 0$

- Dilated and rotated:
 $$\psi_{j,\theta} = 2^{-3j} \psi(2^{-j} R_{\theta}^{-1} u), \quad j \in \mathbb{Z}, \quad R_{\theta} \in \text{O}(3)$$

Wavelet Transform: $\rho \mapsto \{ \int \rho, \rho \ast \psi_{j,\theta}(u) \}$

Interactions at scale 2^j in direction θ
Wavelet modulus

\[\rho(u) \]

\[|\rho \ast \psi_{j, \theta}(u)| \]

\[\|\rho\|_1 = \hat{\rho}(0) \]
Wavelet invariants

Rotations θ

$$\| \rho \ast \psi_{j,\theta}(u) \|_1 = \int_{O(3)} \int_{\mathbb{R}^3} |\rho \ast \psi_{j,\theta}(u)| \, du \, d\theta$$
Invariant wavelet operator

Invariant wavelet operator:

\[
\Theta \rho(j) = \| \rho \ast \psi_j, \cdot \|_1
\]

Pros:

- Isometry invariant
- Stable to deformations (Mallat)
- Diagonalizes Coulomb and is sparse:

\[
U(\rho) = -\log \epsilon \sum_{j=\log \epsilon} w_j \| \rho \ast \psi_j, \cdot \|_2^2 + O(\epsilon)
\]

Cons: Encoding the invariants removes a lot of information
M-term regression error

\[\tilde{f}_M(x) = \sum_{m=1}^{M} w_{k_m} \phi_{k_m}(x) \]

Data set:
Planar organic molecules

Multiscale wavelet dictionary is sparser than Fourier dictionary
M-term regression error

\[\tilde{f}_M(x) = \sum_{m=1}^{M} w_{k_m} \phi_{k_m}(x) \]

Coulomb matrices outperform both Fourier and wavelets.

Data set:
Planar organic molecules
Invariant scattering operator

Couples wavelet features at two scales to encode complex interactions that move across scales.
Coupled multiscale phenomena

Multipole expansion dipole-dipole moment:

\[
\frac{\mu_1 \cdot \mu_2}{R^3}
\]
Coupled multiscale phenomena

Small scale wavelets $\psi_{j,\theta}$ can learn dipole orientations.
Large wavelets $\psi_{j',\theta'}$ can learn the distance between molecules.
But there is no linear expansion of the dipole-dipole moment as:

$$\frac{\mu_1 \cdot \mu_2}{R^3} \neq \sum_{j \text{ small}} w_j \| \rho \ast \psi_{j,\cdot} \|_1 + \sum_{j' \text{ large}} w_{j'} \| \rho \ast \psi_{j',\cdot} \|_1$$
Coupled multiscale phenomena

2nd order scattering features on the other hand:

First apply the small scale wavelet transform $\rho \ast \psi_{j,\theta} \ldots$

...then apply the large scale wavelet transform $|\rho \ast \psi_{j,\theta}| \ast \psi_{j',\theta'+\theta}$

Intuition and numerical evidence supports (theory in progress):

$$\frac{\mu_1 \cdot \mu_2}{R^3} \approx \sum_{j \text{ small}} \sum_{j' \text{ large}} \sum_{\theta'} w_{j,j',\theta'} \|\rho \ast \psi_{j,.} \ast \psi_{j',\theta'+.}\|_1$$
M-term regression error

\[\tilde{f}_M(x) = \sum_{m=1}^{M} w_k \phi_k(x) \]

<table>
<thead>
<tr>
<th></th>
<th>Coulomb</th>
<th>Fourier</th>
<th>Wavelet</th>
<th>Scattering</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>2.4</td>
<td>5.3</td>
<td>5.4</td>
<td>1.7</td>
</tr>
<tr>
<td>RMSE</td>
<td>5.4</td>
<td>7.2</td>
<td>7.1</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Data set: Planar organic molecules
Water Molecules

Root mean square error (meV/atom)

<table>
<thead>
<tr>
<th></th>
<th>SOAP</th>
<th>Scattering</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 Training</td>
<td>0.70</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Long range interactions are $O(1/R^3)$

Data set:
Water molecules

![Graph showing log$_2$ RMSE vs log$_2$ M with lines for SOAP and Scattering, and images of water molecules]
Water Lithium Ion Systems

Root mean square error (meV/atom)

<table>
<thead>
<tr>
<th></th>
<th>SOAP</th>
<th>Scattering</th>
</tr>
</thead>
<tbody>
<tr>
<td>700 Training</td>
<td>40</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Long range interactions are $O(1/R^2)$

Data set: Water & Lithium Ion
Future directions

• Efficient 3D software

• Rigorous link of scattering second layer with multipole methods

• Theoretical analysis of kinetic and exchange-correlation energies

• Utilization of forces

• Extensions to solid state physics, drug discovery, other many body problems in physics, other physical systems exhibiting complex multiscale behavior

• Connections with deep learning
Conclusions

To apply machine learning to many body problems, we must attack the curse of dimensionality. To do so we need to:

- Interpolate in low dimensional approximation spaces by…
- …nonlinear separation of original variables into learned non-interacting variables.

To achieve these goals, we utilize:

- Scale and angular separation over groups (translation, rotation)
- Symmetry and invariance properties
- Stability to deformations
- Cascade of operators (wavelet modulus) with the previous three properties to recover lost information