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1 Introduction  

Clustering algorithms play an integral role in exploratory analysis of single cell data. The aim of 
these analyses is to find population structures that often exist at multiple scales.  Previous 
approaches are limited to finding clusters in data, and these clustering methods come with 
serious limitation for exploration of this structure. For instance, they require commonly missing 
knowledge about the structure of the data such as the granularity or even the number of clusters. 
We propose a novel scalable diffusion-based data contracting process, that learns the shape of 
the data and contracts datapoints iteratively towards a diffusion-based data potential function. In 
each iteration, datapoints move to the center of gravity of their local neighbors as defined by a 
graph diffusion process, and this in turn alters the graph diffusion to reflect the new data 
positions. This process is carried forward by a non-homogenous Markov process representing the 
changing affinities between datapoints, along with changing granularities, and eventually 
collapses all data to a single point. However, each intermediate step in this process is a clustering 
at a particular granularity or abstraction level. Therefore, this process can naturally uncover a 
continual hierarchy of clusters.  

We estimate particularly good points in the process to extract clusters using a novel nuclear-
norm based technique that identifies metastable states in this contracting process. 

We apply our algorithm on data of a clinical trial investigating the effects of anti-PD-1 
immunotherapy in patients suffering from glioblastoma multiforme and present preliminary 
evidence that the algorithm finds meaningful structure in the dataset, i.e. it identifies rare, 
differentiated cell populations and a hierarchy of these populations, indicating that the algorithm 
will be of general use in biomedical research. 



2 Condensation Process  

Algorithm 1 gives an overview of the condensation process: Initially, a Markov affinity matrix is 
computed by applying a kernel (e.g. Gaussian or MGC [1]) to the pairwise Euclidean distances 
and by normalizing each row such that it becomes row-stochastic. The application of the kernel 
is impacted by parameter σ where a larger value for σ causes that a larger neighborhood is taken  

 
into account. Next, this process is used to diffuse for t steps by powering the Markov matrix by t. 
Each datapoint is subsequentely moved towards the center of gravity of its neighbors by 
calculating a weighted sum of the current locations of the data points and the product of the 
diffused Markov matrix with the current locations. The stability of the process at any point is 
computed by comparing the nuclear norm of the diffused Markov matrix from the current 
iteration with that from the previous iteration. The actual cluster assignment can be obtained 
using a variety of clustering algorithms. At each metastable point the sigma or width of the 
Gaussian kernel is increased to look for cluster-structures at a higher level of granularity. As the 
distances between points of the same natural cluster assignment are very close in comparison to 
those between clusters, the “calling of clusters” is easier than without our condensation process. 
In our experimentation, we used spectral clustering with k equal to the number of eigenvalues 
close to one [3]. 

Figure 1 illustrates the condensation sequence on a data set with 1000 samples generated using a 
Gaussian mixture model. The upper row of figures shows how the samples are contracted to 
local density maxima that are iteratively merged. The bottom row of figures shows cluster 
assignments at the chosen iterations in the uncondensed space. Observe how the algorithm 
naturally finds a continuous hierarchy of clusters. 



	

Figure	1:	Illustration	of	a	Condensation	Sequence 

	

Figure	2:	Illustration	of	the	Condensation	Move 

Intuitively, the condensation move in each iteration can be interpreted as an interplay of gravity 
tension and inertia. The strength of the gravity force between samples depends on an applied 
kernel (e.g. Gaussian or MGC [1]). The application of the kernel assures that the condensation 
does not take place in open space but on the local manifold and as such reduces the impact of 
noise. Inertia balances gravity forces to prevent that all samples are immediately collapsed in the 
center of gravity. The idea of the condensation step is illustrated in Figure 2, where a choice of 
gravity forces between the samples is represented as gray lines (the darkness of lines is 
proportional to the strength of the gravity force) and the sums of gravity forces are represented 
by orange arrows. 

3 Case Study: Glioblastoma  

Glioblastoma multiforme (GBM) is the most malignant and aggressive brain cancer and has an 
incidence of two to three per 100,000 adults per year. The median survival time of a patient after 



diagnosis is 15 months with standard treatment (total resection of tumor, chemo/radiotherapy) 
and less than three months otherwise [2]. GBM is thought to benefit from an immunosuppressive 
environment. One mechanism of T cell suppression involves the PD-1/PD-L1 
immunomodulatory pathway. Anti-PD-1 treatment aims at blocking the pathway via antibodies.  

We ran the condensation process on blood samples from patients undergoing anti-PD-1 
immunotherapy. The left two plots in Figure 3 show the cluster results obtained at iterations 340, 
389, and 450 during the condensation process where samples are displayed using tSNE [4]. Note 
how clusters of different granularity are found. The plot on the left of Figure 4 shows the 
development of the eigenvalues of the Markov matrix during the condensation process. The red 
lines indicate metastable iterations. Note how the increase in σ after the metastable points leads 
subsequently to a more effective condensation. The heat map on the right shows the expression 
of CyTOF channels for the found clusters and allows both for the identification of known cell 
populations such as cytotoxic lymphocytes (cluster 1) and T helper cells (cluster 2) as well as 
unique cell populations such as the potential regulatory B cells (cluster 3). 	

	

Figure	3	Cluster	Assignments	at	Iterations	340,	389,	and	450	in	tSNE-Plot	

	

Figure	4	Development	of	Eigenvalues	during	the	Condensation	Process	and	heat	map	displaying	identified	clusters	
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