5.2 Positive semidefinite kernels

Adapted from [1, Chapter 2.2.1]

Starting with this section we will try to answer the following question: Which types of kernels $k(x, x')$ induce a nonlinear feature map $\Phi: \mathcal{X} \to \mathcal{H}$, from a set \mathcal{X} into a Hilbert space \mathcal{H}, so that $k(x, x') = \langle \Phi(x), \Phi(x') \rangle$?

Given a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ and sampled data $\mathcal{X}_n = \{x_1, \ldots, x_n\} \subset \mathcal{X}$, the $n \times n$ matrix

$$K_{ij} = k(x_i, x_j)$$

is the Gram matrix of k with respect to \mathcal{X}_n.

A real valued Gram matrix K satisfying

$$\sum_{i,j=1}^{n} c_ic_jK_{ij} \geq 0$$

for all $c_i \in \mathbb{R}$ is positive semidefinite. A symmetric matrix is positive semidefinite if and only if all of its eigenvalues are nonnegative.

A kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which is symmetric, and which for all $n \in \mathbb{N}$ and all $x_1, \ldots, x_n \in \mathcal{X}$ gives rise to a positive semidefinite Gram matrix, is a positive semidefinite kernel. Positive semidefinite kernels are nonnegative on the diagonal (check this!):

$$\forall x \in \mathcal{X}, \ k(x, x) \geq 0. \hspace{1cm} (16)$$

Kernels can be regarded as generalized inner products. However, they are not linear! (so linearity in the arguments does not hold) They do satisfy a type of Cauchy Schwarz inequality though:

Proposition 1. If k is a positive semidefinite kernel, then

$$\forall x, x' \in \mathcal{X}, \ k(x, x')^2 \leq k(x, x)k(x', x').$$
Proof. Take \(x_1 = x \) and \(x_2 = x' \). Then for all \(c_1, c_2 \in \mathbb{R} \),
\[
c_1^2 k(x_1, x_1) + c_2^2 k(x_2, x_2) + 2c_1c_2 k(x_1, x_2) \geq 0. \tag{17}
\]
Take:
\[
c_1 = k(x_1, x_2) \quad c_2 = -k(x_1, x_1). \tag{18}
\]
Plugging (18) into (17):
\[
k(x_1, x_2)^2 k(x_1, x_1) + k(x_1, x_1)^2 k(x_2, x_2) - 2k(x_1, x_2)^2 k(x_1, x_1) \geq 0,
k(x_1, x_1)^2 k(x_2, x_2) - k(x_1, x_1)k(x_1, x_2)^2 \geq 0,
k(x_1, x_1) [k(x_1, x_1)k(x_2, x_2) - k(x_1, x_2)^2] \geq 0.
\]
But \(k(x_1, x_1) \geq 0 \), so this implies that
\[
k(x_1, x_1)k(x_2, x_2) - k(x_1, x_2)^2 \geq 0,
\]
which completes the proof. \(\square \)

Exercises

5.3 The reproducing kernel map

Adapted from [1, Chapter 2.2.2]

Just a reminder, \(k \) is a real valued positive semi-definite kernel; also let \(\mathcal{X} \) be nonempty. Let
\[
\mathbb{R}^{\mathcal{X}} = \{ f : \mathcal{X} \to \mathbb{R} \} = \text{set of all functions mapping } \mathcal{X} \text{ to } \mathbb{R},
\]
and define:
\[
\Phi : \mathcal{X} \to \mathbb{R}^{\mathcal{X}},
\]
\[
x \mapsto \Phi(x) = k(\cdot, x).
\]
So \(\Phi(x) \in \mathbb{R}^{\mathcal{X}} \), and we have
\[
\forall x' \in \mathcal{X}, \quad \Phi(x)(x') = k(x', x) = k(x, x').
\]
Thus this map \(\Phi \) represents \(x \in \mathcal{X} \) be measuring its similarity to all other points in \(\mathcal{X} \). See Figure 10 for an illustration of the map \(\Phi \).

We are going to systematically:
1. Turn the image of Φ into a vector space.
2. Define an inner product on this vector space.
3. Show this inner product satisfies $k(x, x') = \langle \Phi(x), \Phi(x') \rangle$.

Figure 10: Visualization of the feature map Φ, which represents each $x \in \mathcal{X}$ by a kernel shaped function sitting on x. In this sense, each data point is represented by its similarity to all other points in \mathcal{X}. In the picture, the kernel is assumed to be bell shaped, e.g., a Gaussian $k(x, x') = \exp\left(-\|x - x'\|^2 / 2\sigma^2\right)$.

5.3.1 Making the image of Φ a vector space

Let $n \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, and $x_1, \ldots, x_n \in \mathcal{X}$ all be arbitrary. Linear combinations of $\Phi(x_1), \ldots, \Phi(x_n)$ take the form:

$$ f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i). \quad (19) $$

As you can verify, the collection of all such f (19) defines a vector space V. Note that two different collections of points $\{x_i\}_{i \leq n}$ and coefficients $\{\alpha_i\}_{i \leq n}$ may give the same f! In other words, there may exist $m \in \mathbb{N}$, $\beta_1, \ldots, \beta_m \in \mathbb{R}$, and $x'_1, \ldots, x'_m \in \mathcal{X}$ such that:

$$ f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i) = \sum_{j=1}^{m} \beta_j k(\cdot, x'_j). $$
5.3.2 Defining an inner product

Let f be as in (19) and let g be:

$$g(\cdot) = \sum_{j=1}^{m} \beta_j k(\cdot, x'_j).$$

Define the inner product between f and g as:

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, x'_j).$$

(20)

Before checking the properties of an inner product, we first need to make sure it is “well defined.” Indeed, it depends upon the points $\{x_i\}_{i \leq n}$ and $\{x'_j\}_{j \leq m}$, and the coefficients $\{\alpha_i\}_{i \leq n}$ and $\{\beta_j\}_{j \leq m}$, used to represent f and g, respectively. To check this, first observe:

$$\langle f, g \rangle = \sum_{i=1}^{n} \alpha_i \sum_{j=1}^{m} \beta_j k(x_i, x'_j),$$

$$= \sum_{i=1}^{n} \alpha_i g(x_i).$$

(21)

Thus $\langle f, g \rangle$ does not depend on the representation of g. Similarly,

$$\langle f, g \rangle = \sum_{j=1}^{m} \beta_j f(x'_j),$$

and so it does not depend on the representation of f either.

Let us now show that $\langle \cdot, \cdot \rangle$ satisfies the properties of an inner product; we begin with additivity. By the previous calculation:

$$\langle f + h, g \rangle = \sum_{j=1}^{m} \beta_j (f(x'_j) + h(x'_j)),$$

$$= \sum_{j=1}^{m} \beta_j f(x'_j) + \sum_{j=1}^{m} \beta_j h(x'_j),$$

$$= \langle f, g \rangle + \langle h, g \rangle.$$
It is also homogeneous since for $a \in \mathbb{R}$:

$$\langle af, g \rangle = \sum_{j=1}^{m} \beta_j(af(x'_j)) = a \sum_{j=1}^{m} \beta_j f(x'_j) = a \langle f, g \rangle.$$

Additionally it is symmetric since k is symmetric:

$$\langle f, g \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x_i, x'_j) = \sum_{j=1}^{m} \sum_{i=1}^{n} \beta_j \alpha_i k(x'_j, x_i) = \langle g, f \rangle.$$

The function $\langle \cdot, \cdot \rangle$ is nonnegative because k is a positive semi-definite kernel:

$$\langle f, f \rangle = \sum_{i,j=1}^{n} \alpha_i \alpha_j k(x_i, x_j) \geq 0.$$

This property, along with additivity and homogeneity, implies that the kernel $\rho(f, g) = \langle f, g \rangle$, defined on the image of Φ, is a positive semidefinite kernel. Indeed, for any $\gamma_1, \ldots, \gamma_n \in \mathbb{R}$ and $f_1, \ldots, f_n \in \text{image}(\Phi)$,

$$\sum_{i,j=1}^{n} \gamma_i \gamma_j \rho(f_i, f_j) = \left\langle \sum_{i=1}^{n} \gamma_i f_i, \sum_{j=1}^{n} \gamma_j f_j \right\rangle \geq 0.$$

To show that $\langle \cdot, \cdot \rangle$ is strictly positive, we observe that using (21) gives:

$$\langle k(\cdot, x), f \rangle = \sum_{i=1}^{n} \alpha_i k(x_i, x) = f(x). \quad (22)$$

This is a remarkable property! It is why these positive semidefinite kernels are also called *reproducing kernels*. Notice it implies:

$$\langle k(\cdot, x), k(\cdot, x') \rangle = k(x, x'). \quad (23)$$

Using (22) and Proposition 1 (kernel version of Cauchy-Schwarz) applied to the kernel $h(f, g) = \langle f, g \rangle$, we get:

$$|f(x)|^2 = |\langle k(\cdot, x), f \rangle|^2,$$

$$\leq \langle k(\cdot, x), k(\cdot, x) \rangle \langle f, f \rangle,$$

$$= k(x, x) \langle f, f \rangle.$$
Thus $\langle f, f \rangle = 0$ clearly implies $f(x) = 0$ for all $x \in \mathcal{X}$, and so at last we have proven that $\langle \cdot, \cdot \rangle$ is an inner product!

Since we defined $\Phi(x) = k(\cdot, x)$, in light of (23) we have:

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle. \tag{24}$$

Therefore, the inner product space $(\text{image}(\Phi), \langle \cdot, \cdot \rangle)$ defines a “feature space” for the kernel k, in which evaluation of $k(x, x')$ corresponds to computing an inner product between $\Phi(x)$ and $\Phi(x')$.
References

