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Lecture 7

5.2 Positive semidefinite kernels

Adapted from [1, Chapter 2.2.1]

Starting with this section we will try to answer the following question:
Which types of kernels k(x, x0) induce a nonlinear feature map F : X !
H, from a set X into a Hilbert space H, so that k(x, x0) = hF(x), F(x0)i?

Given a kernel k : X ⇥X ! R and sampled data Xn = {x1, . . . , xn} ⇢
X , the n ⇥ n matrix

Kij = k(xi, xj)

is the Gram matrix of k with respect to Xn.
A real valued Gram matrix K satisfying

n

Â
i,j=1

cicjKij � 0

for all ci 2 R is positive semidefinite. A symmetric matrix is positive semidef-
inite if and only if all of its eigenvalues are nonnegative.

A kernel k : X ⇥X ! R which is symmetric, and which for all n 2 N
and all x1, . . . , xn 2 X gives rise to a positive semidefinite Gram matrix, is
a positive semidefinite kernel. Positive semidefinite kernels are nonnegative
on the diagonal (check this!):

8 x 2 X , k(x, x) � 0. (16)

Kernels can be regarded as generalized inner products. However, they
are not linear! (so linearity in the arguments does not hold) They do sat-
isfy a type of Cauchy Schwarz inequality though:

Proposition 1. If k is a positive semidefinite kernel, then

8 x, x0 2 X , k(x, x0)2  k(x, x)k(x0, x0).
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Proof. Take x1 = x and x2 = x0. Then for all c1, c2 2 R,

c2
1k(x1, x1) + c2

2k(x2, x2) + 2c1c2k(x1, x2) � 0. (17)

Take:
c1 = k(x1, x2) c2 = �k(x1, x1). (18)

Plugging (18) into (17):

k(x1, x2)
2k(x1, x1) + k(x1, x1)

2k(x2, x2)� 2k(x1, x2)
2k(x1, x1) � 0,

k(x1, x1)
2k(x2, x2)� k(x1, x1)k(x1, x2)

2 � 0,
k(x1, x1)

⇥
k(x1, x1)k(x2, x2)� k(x1, x2)

2⇤ � 0.

But k(x1, x1) � 0, so this implies that

k(x1, x1)k(x2, x2)� k(x1, x2)
2 � 0,

which completes the proof.

Exercises

Exercise 14. Prove (16).

5.3 The reproducing kernel map

Adapted from [1, Chapter 2.2.2]

Just a reminder, k is a real valued positive semi-definite kernel; also let X
be nonempty. Let

RX = { f : X ! R} = set of all functions mapping X to R,

and define:

F :X ! RX ,
x 7! F(x) = k(·, x).

So F(x) 2 RX , and we have

8 x0 2 X , F(x)(x0) = k(x0, x) = k(x, x0).

Thus this map F represents x 2 X be measuring its similarity to all other
points in X . See Figure 10 for an illustration of the map F.

We are going to systematically:
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1. Turn the image of F into a vector space.

2. Define an inner product on this vector space.

3. Show this inner product satisfies k(x, x0) = hF(x), F(x0)i.

Figure 10: Visualization of the feature map F, which represents each x 2
X by a kernel shaped function sitting on x. In this sense, each data point
is represented by its similarity to all other points in X . In the picture, the
kernel is assumed to be bell shaped, e.g., a Gaussian k(x, x0) = exp(�kx�
x0k2/2s2).

5.3.1 Making the image of F a vector space

Let n 2 N, a1, . . . , an 2 R, and x1, . . . , xn 2 X all be arbitrary. Linear
combinations of F(x1), . . . , F(xn) take the form:

f (·) =
n

Â
i=1

aik(·, xi). (19)

As you can verify, the collection of all such f (19) defines a vector space
V. Note that two different collections of points {xi}in and coefficients
{ai}in may give the same f ! In other words, there may exist m 2 N,
b1, . . . , bm 2 R, and x0

1, . . . , x0
m 2 X such that:

f (·) =
n

Â
i=1

aik(·, xi) =
m

Â
j=1

b jk(·, x0
j).
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5.3.2 Defining an inner product

Let f be as in (19) and let g be:

g(·) =
m

Â
j=1

b jk(·, x0
j).

Define the inner product between f and g as:

h f , gi =
n

Â
i=1

m

Â
j=1

aib jk(xi, x0
j). (20)

Before checking the properties of an inner product, we first need to make
sure it is “well defined.” Indeed, it depends upon the points {xi}in and
{x0

j}jm, and the coefficients {ai}in and {b j}jm, used to represent f and
g, respectively. To check this, first observe:

h f , gi =
n

Â
i=1

ai

m

Â
j=1

b jk(xi, x0
j),

=
n

Â
i=1

aig(xi). (21)

Thus h f , gi does not depend on the representation of g. Similarly,

h f , gi =
m

Â
j=1

b j f (x0
j),

and so it does not depend on the representation of f either.
Let us now show that h·, ·i satisfies the properties of an inner product;

we begin with additivity. By the previous calculation:

h f + h, gi =
m

Â
j=1

b j( f (x0
j) + h(x0

j)),

=
m

Â
j=1

b j f (x0
j) +

m

Â
j=1

b jh(x0
j),

= h f , gi+ hh, gi.
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It is also homogeneous since for a 2 R:

ha f , gi =
m

Â
j=1

b j(a f (x0
j)) = a

m

Â
j=1

b j f (x0
j) = ah f , gi.

Additionally it is symmetric since k is symmetric:

h f , gi =
n

Â
i=1

m

Â
j=1

aib jk(xi, x0
j) =

m

Â
j=1

n

Â
i=1

b jaik(x0
j, xi) = hg, f i.

The function h·, ·i is nonnegative because k is a positive semi-definite
kernel:

h f , f i =
n

Â
i,j=1

aiajk(xi, xj) � 0.

This property, along with additivity and homogeneity, implies that the
kernel r( f , g) = h f , gi, defined on the image of F, is a positive semidefi-
nite kernel. Indeed, for any g1, . . . , gn 2 R and f1, . . . , fn 2 image(F),

n

Â
i,j=1

gigjr( fi, fj) =
n

Â
i,j=1

gigjh fi, fji =
*

n

Â
i=1

gi fi,
n

Â
j=1

gj f j

+
� 0.

To show that h·, ·i is strictly positive, we observe that using (21) gives:

hk(·, x), f i =
n

Â
i=1

aik(xi, x) = f (x). (22)

This is a remarkable property! It is why these positive semidefinite kernels
are also called reproducing kernels. Notice it implies:

hk(·, x), k(·, x0)i = k(x, x0). (23)

Using (22) and Proposition 1 (kernel version of Cauchy-Schwarz) applied
to the kernel h( f , g) = h f , gi, we get:

| f (x)|2 = |hk(·, x), f i|2,
 hk(·, x), k(·, x)ih f , f i,
= k(x, x)h f , f i.
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Thus h f , f i = 0 clearly implies f (x) = 0 for all x 2 X , and so at last we
have proven that h·, ·i is an inner product!

Since we defined F(x) = k(·, x), in light of (23) we have:

k(x, x0) = hF(x), F(x0)i. (24)

Therefore, the inner product space (image(F), h·, ·i) defines a “feature
space” for the kernel k, in which evaluation of k(x, x0) corresponds to
computing an inner product between F(x) and F(x0).
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