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Lecture 15

This is essentially [10, Lecture 2] with small modifications.

8.3.2 Weighted graphs and the graph Laplacian

A weighted graph G = (V,E,w) is a graph G = (V,E) along with a
function w : E — R* (where R* = (0,00)). The adjacency matrix of a
weighted graph, rather than putting ones for the edges, instead puts the
weight:

[l i) €E,
(Ac)ij = { 0 otherwise

The degree matrix is defined the same as before, but (Dg);; is now the
sum of the weights of the weighted edges connected to vertex i:

n

(DG)ii = Z(Ac)ij - iw(i/j)'

j=1 ]
Finally, as before, the graph Laplacian is given by:
LG = DG — AG. (46)

Let us now give a more convenient formulation of the graph Lapla-
cian. Let Gy, be the graph on two vertices V = {1,2} with one edge (1,2)
and w(1,2) = 1 (if in the future we forget to specify the weights, assume
they are all one as in an unweighted graph). By definition we have:

1 -1
o= 171).

Note that for a vector v € R?,
v'Lg,,v = (v[1] — v[2])*.

Now let G = (V,E) be a graph on n vertices, and suppose (i,]) € E.
Define the subgraph G;; of G as G;; = (V,(i,j)), i.e., it has the same n
vertices, but only the edge (i, /). The graph Laplacian Lg,; is the n x n
matrix whose only non-zero entries are in the intersections of rows and
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columns i and j. As an example, consider the graph G on 5 vertices with
(2,5) € E. Then:

0 000 O
0 100 —1
Le,,=| 0 000 0
0 000 O
0-100 1

Clearly in this example, and generally, the 2 x 2 matrix at the intersection
of rows and columns i and j is

1 -1
-1 1)
For a general weighted graph G = (V,E,w), we now claim that (check

this!):
Le= Y w(ij)Lc, (47)

(i,j)eE

Many elementary properties of the graph Laplacian follow from (47).
In particular, for v € IR”, it is immediate that:

v'Lev =) w(i,j)(oli] —o[i])*.

(i,j)€E
Thus v"Lgo > 0 for any v € R”, from which it follows that L is a positive
semidefinite matrix. In particular, all eigenvalues of L; are nonnegative.
8.3.3 Connectivity

From the definition L = Dg — Ag, it is immediate that L1 = 0 and so
any constant vector is an eigenvector of L; with eigenvalue 0.

Proposition 2. Let G = (V,E) be a graph, and let 0 = A; < Ay < -+ < A, be
the eigenvalues of Lg. Then:

Ay > 0 <= G is connected.

Proof. We first prove that A, > 0 = G is connected. This statement is
equivalent to its contrapositive, which is: G is disconnected = A, = 0.
We prove the latter. If G is disconnected, then it can be described as the
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union of two graphs G; and G,. Without loss of generality, we can relabel

the vertices such that: .
_ Gy 0
Lo = ( 0 Lg, ) '

Thus L has two orthogonal eigenvectors both with eigenvalue zero:

1 0
ne(8) e (2)

and so A; = A, = 0.
Now we prove: G is connected = A, > 0. Let ¢ be an eigenvector of
L with eigenvalue 0. Since Lgp = 0, we have:

¢"Lop = Y (¢li] — ¢[j])* = 0. (48)

(i,j)€E

We prove by induction that ¢[i] = ¢][j] for all i,j € V, and hence that
@ must be a constant vector (which implies that the dimension of the
eigenspace of eigenvalue 0 is one, and so A, > 0). The inductive argument
will be over the length m of the minimum length path connecting i and ;.
Suppose that m = 1. Then (i,j) € E, and by (48) we have ¢[i] = ¢][j]. Now
suppose that ¢[k] = @[{] for all k,¢ € V that are connected by a path of
length m < my —1 for my < 2. Now let i,j € V be connected by a path
of length my, say i = uy, Uy, ..., Umy, Umy+1 = j. Then @(u1) = @(uy) since
(u1,uz) € E, and ¢(uz2) = @(Um,+1) since up and u,,,+1 are connected by
a path of length my — 1. But then ¢[i] = ¢(11) = @(u2) = @(Umy+1)

¢lj]-

Corollary 1. Let G = (V, E,w) be a weighted graph, and let 0 = A < A; <
-« < Ay, be the eigenvalues of Lg. Then:

11l

Ar > 0 <= G is connected.

Corollary 2. Let G = (V, E,w) be a weighted graph, and let 0 = A < A; <
-« < Ay be the eigenvalues of L. Then:

M =A== Ay =0 <= G has m connected components.
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