9.6.3 Relating graph embeddings and manifold embeddings

We now related optimal graph embeddings to optimal manifold embeddings. To do so we shall leverage the heat kernel. Let $f : \mathcal{M} \rightarrow \mathbb{R}$ be the initial heat distribution on a manifold \mathcal{M}, and let $u(x,t)$ be the heat distribution at time t so that $u(x,0) = f(x)$. Recall the heat equation is

$$\left(\frac{\partial}{\partial t} + \mathcal{L} \right) u = 0,$$

where $u(x,t)$ is a function of space $x \in \mathcal{M}$ (the manifold) and time $t \in [0, \infty)$, and where $\mathcal{L} = -\Delta$. Recall as well that the solution is given by

$$u(x,t) = \int_{\mathcal{M}} K(x,y;t)f(y) \, dV(y) \quad (66)$$

where $K(x,y;t)$ is the heat kernel. It thus follows that:

$$\mathcal{L} f(x) = \lim_{t_0 \to 0} \mathcal{L} u(x,t_0) = -\lim_{t_0 \to 0} \left(\frac{\partial}{\partial t} \int_{\mathcal{M}} K(x,y;t)f(y) \, dV(y) \right)_{t=t_0} \quad (67)$$

One can show that locally, the heat kernel even on a d-dimensional manifold looks like a Gaussian:

$$K(x,y;t) \approx (4\pi t)^{-d/2} e^{-\|x-y\|^2/4t}(\phi(x,y) + O(t)),$$

where $\phi(x,y)$ is a smooth function with $\phi(x,x) = 1$. Therefore,

$$K(x,y;t) \approx (4\pi t)^{-d/2} e^{-\|x-y\|^2/4t}, \quad t \text{ small.} \quad (68)$$

Notice that (66) implies that

$$f(x) = \lim_{t \to 0} \int_{\mathcal{M}} K(x,y;t)f(y) \, dV(y).$$

Let us now estimate the time derivative on the right hand side of (67). We have:

$$- \left(\frac{\partial}{\partial t} \int_{\mathcal{M}} K(x,y;t)f(y) \, dV(y) \right)_{t=t_0} \approx \ldots$$

$$\ldots \approx -\frac{1}{t} \left(\int_{\mathcal{M}} K(x,y;t_0+t)f(y) \, dV(y) - \int_{\mathcal{M}} K(x,y;t_0)f(y) \, dV(y) \right), \quad t \text{ small.}$$
Thus taking the limit as $t_0 \to 0$ we get:

\[
\mathcal{L}f(x) = -\lim_{t_0 \to 0} \left(\frac{\partial}{\partial t} \int_{\mathcal{M}} K(x, y; t) f(y) \, dV(y) \right)_{t=t_0} \approx \ldots
\]

\[
\approx -\frac{1}{t} \left(\int_{\mathcal{M}} K(x, y; t) f(y) \, dV(y) - f(x) \right), \quad t \text{ small.}
\]

\[
\approx \frac{1}{t} \left(f(x) - (4\pi t)^{-d/2} \int_{\mathcal{M}} e^{-\|x-y\|^2/4t} f(y) \, dV(y) \right), \quad t \text{ small.}
\]

Notice the normalization term $(4\pi t)^{-d/2}$ depends on the dimension d of the manifold. However, since $\mathcal{L}1 = 0$, we have:

\[
0 \approx \frac{1}{t} \left(1 - (4\pi t)^{-d/2} \int_{\mathcal{M}} e^{-\|x-y\|^2/4t} f(y) \, dV(y) \right)
\]

which implies

\[
(4\pi t)^{d/2} \approx \int_{\mathcal{M}} e^{-\|x-y\|^2/4t} \, dV(y).
\]

Thus if we set

\[
q(x) = \int_{\mathcal{M}} e^{-\|x-y\|^2/4t} \, dV(y)
\]

we get

\[
\mathcal{L}f(x) \approx \frac{1}{t} \left(f(x) - \frac{1}{q(x)} \int_{\mathcal{M}} e^{-\|x-y\|^2/4t} f(y) \, dV(y) \right), \quad t \text{ small.} \quad (69)
\]

Now suppose that $\mathcal{X} = \{x_1, \ldots, x_n\} \subset \mathcal{M}$ are uniformly sampled from the manifold \mathcal{M}. Define:

\[
q_n(x_i) = \sum_{j=1}^{n} e^{-\|x_i-x_j\|^2/4t}.
\]

The right hand side of (69) can be approximated as:

\[
\mathcal{L}f(x_i) \approx \frac{1}{t} \left(f(x_i) - \frac{1}{q_n(x_i)} \sum_{j=1}^{n} e^{-\|x_i-x_j\|^2/4t} f(x_j) \right)
\]

Now let’s use \mathcal{X} as the vertices in a weighted graph $G = (\mathcal{X}, E, w)$. We take G to be a complete graph, with weighted edges:

\[
w(i, j) = e^{-\|x_i-x_j\|^2/4t}. \quad (70)
\]
Define the asymmetric normalized graph Laplacian as:
\[\overline{L} = I - D^{-1}A. \]

Notice that
\[D_{ii} = q_n(x_i). \]

Thus, if we define \(\tilde{f} \in \mathbb{R}^n \) as:
\[\tilde{f}[i] = f(x_i), \]

it follows that
\[\mathcal{L}f(x_i) \approx \frac{1}{t} \overline{L}\tilde{f}[i]. \]

Thus the (asymmetric) normalized graph Laplacian is an approximation of the Laplace-Beltrami operator!

Notice we have the following relationship between the eigenvectors/eigenvalues of \(N \) and \(\overline{L} \). Once again let \(\phi_k \) be an eigenvector of \(N \) with eigenvalue \(\gamma_k \),
\[(I - D^{-1/2}AD^{-1/2})\phi_k = \gamma_k \phi_k. \]

It follows that
\[\psi_k = D^{-1/2}\phi_k \]
is an eigenvector of \(\overline{L} \); indeed:
\[
\begin{align*}
\overline{L}\psi_k &= (I - D^{-1}A)D^{-1/2}\phi_k \\
&= D^{-1/2}(D^{1/2} - D^{-1/2}A)D^{-1/2}\phi_k \\
&= D^{-1/2}(I - D^{-1/2}AD^{-1/2})\phi_k \\
&= D^{-1/2}\gamma_k \phi_k \\
&= \gamma_k \psi_k.
\end{align*}
\]

Thus the Laplacian Eigenmaps algorithm computes eigenvectors which approximate the eigenfunctions of the Laplace-Beltrami operator, and uses them to embed the graph! In particular, the optimal graph embedding of the weighted graph \(G \) is, in a precise sense, the discrete analogue of the optimal embedding of the manifold \(\mathcal{M} \) if the vertices of \(G \) are data points uniformly sampled from \(\mathcal{M} \), and if the weights in the graph are given by (70).
Exercise 37 (optional). Using your Laplacian Eigenmaps code from the previous exercise (from the previous lecture), compute the Laplacian Eigenmaps embedding for the circles data set from Exercise 11. Use the weights

\[w(i, j) = e^{-\|x_i - x_j\|^2 / 4t} \]

for a small value of \(t \) (you will need to be somewhat careful here). Do you get a 2D manifold? Compare with your PCA result from Exercise 11.
References

