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6.2 Translation Invariant Dyadic Wavelet Transform

Section 5.2 of A Wavelet Tour of Signal Processing.

Recall that a continuous wavelet transform computes

Wf (u, s) = !f, ! u,s" = f # ø! s(u), $(u, s) %R & (0, ' ) (63)

where
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The operatorW , as deÞned in (63), does not deÞne an analysis operator of a
semi-discrete frame because the scale parameters takes values over the entire
interval (0, ' ), which is not discrete.

A semi-discrete wavelet frame is generated by sampling the scale param-
eter s along an exponential sequence{ aj } j %Z for some a > 1. In many
applications (but not all!), we take a = 2. In this case the generating family
is { ! j } j %Z with

! j (t) = 2 ) j ! (2) j t)

and the translation invariant dictionary is given by:

D = { ! u,j } u%R, j %Z, ! u,j (t) = ! j (t ) u) = 2 ) j ! (2) j (t ) u))

The resulting analysis operator deÞnes the dyadic wavelet transform:

Wf (u, j) = !f, ! u,j " = f # ø! j (u), ø! j (t) = 2 ) j ! #() 2) j t)

Notice that rather than normalizing the dilated wavelets by 2) j/ 2, which
would be analogous to the normalizations) 1/ 2 in the continuous wavelet
transform, we normalize by 2) j . This is to simplify the following presentation.
It simply means that the normalization preserves theL1 norm of ! as opposed
to the L

2 norm, that is, * ! j * 1 = * ! *1. Notice as well that b! j (" ) = b! (2j " )
with this normalization.

Applying Theorem 44 shows that D is a semi-discrete frame if and only
if there exists 0< A + B < 0 such that

A +
X

j %Z

| b! (2j " )|2 + B, $" %R \ { 0} (64)

In this caseW : L2(R) , `2(L2(R)) when the scales are restricted tos = 2 j .
Notice that if ! is a complex analytic wavelet (meaning thatb! (" ) = 0 for
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all " + 0), then it is impossible for (64) to hold. We will come back to this
in a bit. For now assume that ! is a real valued wavelet. The standard
semi-discrete frame condition, which is equivalent to (64), is written as:

A*f*2
2 +

X

j %Z

*f # ø! j * 2
2 + B*f*2

2

Equation (64) shows that if the frequency axis is completely covered by di-
lated dyadic wavelets, then a dyadic wavelet transform deÞnes a complete
and stable representation off %L

2(R); see Figure28.

Figure 28: The squared Fourier transform modulus| b! (2j " )|2 of a real valued
spline wavelet, for 1+ j + 5 and " %[) #, #].

In the case of complex analytic wavelets, one option is to use a larger set
of generating wavelets given by:

{ ! j,! } j %Z, !%{1,) 1} , ! j,! (t) = 2 ) j ! ($2) j t)

In this case for suitably chosen wavelets it is possible for (64) to hold. How-
ever, it is unnecessary to double the number of generating wavelets as in the
above. Indeed, we instead replace (64) with

2A +
X

j %Z

| b! (2j " )|2 +
X

j %Z

| b! () 2j " )|2 + 2B, $ " %R \ { 0} (65)

which, due to the wavelet! being complex analytic, is equivalent to

2A +
X

j %Z

| b! (2j " )|2 + 2B, $ " %(0, ' )
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Let f %L
2(R) be real valued and letfa be the analytic part off . Recall that

bfa(" ) = 2 bf (" ) for " > 0 and 2*f*2
2 = *fa*2

2. Then:

X

j %Z

*f # ø! j * 2
2 =

X

j %Z
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A similar argument shows that
P

j *f # ø! j * 2
2 + B*f*2

2. Therefore the dyadic
wavelet transform with a complex analytic wavelet deÞnes a semi-discrete
frame with frame boundsA and B if (65) holds.

Now suppose we only want to compute the dyadic wavelet transform up
to a maximum scale 2j for j < J . The lost low frequency information is
captured by a single scaling function (or low pass Þlter). Let%%L

2(R) be a
low pass Þlter and let%J (t) = 2 ) J %(2) J t) and let ! be a real valued wavelet.
The dyadic wavelet transform in this case is deÞned as:

WJ f = { f # ø%J (u), f # ø! j (u)} u%R, j<J

The operator WJ is the analysis operator of a semi-discrete frame if

A + | b%(2J " )|2 +
X

j<J

| b! (2j " )|2 + B

If the family { ! j } j %Z are the generators of a semi-discrete frame, meaning
that ( 64) holds, then one can deÞne%in frequency as:

|b%(" )|2 =
⇢

(A + B)/2, " = 0P
j - 0 | b! (2j " )|2, " .= 0
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Figure 29: The dyadic wavelet transformWJ f computed with J = ) 2 and
) 7 + j + ) 3. The top curve isf (t), the next Þve curves aref # ø! j (u), and
the bottom curve isf # ø%J .

Figure 29plots the dyadic wavelet transformWJ f for the signalf from Figure
13.

A dual wavelet for a semi-discrete dyadic wavelet frame (without scaling
function) is computed in frequency as:

be! (" ) =
b! (" )

P
k%Z | b! (2k" )|2

and the generators of the dual semi-discrete dictionary are given by the di-
lations of e! , namely { e! j } j %Z. From this deÞnition it follows that the Fourier
transform of e! j satisÞes:

be! j (" ) = be! (2j " ) =
b! (2j " )

P
k%Z | b! (2j + k" )|2

=
b! (2j " )

P
k%Z | b! (2k" )|2

We thus have
X

j %Z

b! #
j (" )be! j (" ) =

X

j %Z

b! #(2j " )be! (2j " ) = 1 , $ " %R \ { 0}
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and so by Theorem44 the following reconstruction formula holds:

f (t) =
X

j %Z

f # ø! j # e! j (t)

Things are simpliÞed when the semi-discrete dyadic wavelet frame is tight.
In this case

e! u,j (t) =
1
A

! u,j (t) =
1
A

2) j ! (2) j (t ) u))

and signal synthesis is computed as:

f (t) =
1
A

X

j %Z

f # ø! j # ! j (t)

Exercise 71. Read Section 5.2 ofA Wavelet Tour of Signal Processing.

6.2.1 Dyadic Maxima Representation

Section 6.2.2 of A Wavelet Tour of Signal Processing

Let us now temporarily return to the analysis of pointwise singularities of
signalsf via the decay ofWf (u, s) as s , 0. Let ! be a real valued wavelet,
and recall that a wavelet modulus maxima is deÞned as a point (u0, s0) such
that |Wf (u, s0)| is locally maximum at u = u0.

All of the results regarding wavelet coe!cient decay and the pointwise
regularity of f (t) (including, in particular, Theorems 31, 32, and 33) hold
for dyadic wavelet semi-discrete frames by restrictings = 2 j for j %Z. Let
(u0, j) be a modulus maxima point ofWf (u, j), meaning that

&Wf

&u
(u0, j) = 0 (66)

SinceWf (u, j) = f # ø! j (u), ø! j (t) = 2 ) j ! () 2) j t) and

d

dt
ø! j (t) = ) 2) j 2) j ! /() 2) j t) = ) 2) j ! /

j (t)

equation (66) is equivalent to

f # ! /
j (u0) = 0
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Figure 30: (a) The signalf (t). (b) Dyadic wavelet transform computed with
a wavelet ! = ) ' /. (c) Modulus maxima of the dyadic wavelet transform.
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Figure 30 shows the dyadic wavelet transform of a signal and the correspond-
ing wavelet modulus maxima.

Let " denote the wavelet modulus maxima off :

" = { (u, j) %R & Z : f # ! /
j (u) = 0 }

Recall that the dictionary D of a dyadic wavelet transform is:

D = { ! u,j } (u,j )%R&Z

The set " deÞnes a sub-dictionary ofD:

D! = { ! u,j } (u,j )%!

Furthermore, the completion of the span ofD! deÞnes a closed subspaceV!

of L2(R):
V! = spanD!

We can therefore projectf onto V! . Doing so amounts to computing an
approximation f! of f which is the signal synthesized from only the wavelet
modulus maxima off . It is computed with a dual synthesis as:

f! = PV ! f =
X

(u,j )%!

!f, ! u,j " e! u,j

For general dyadic wavelets,f! .= f . However, signals with the same mod-
ulus maxima di#er from each other by small amplitude errors introducing
no oscillations, so in numerical experimentsf! 0 f . If f is band-limited
(meaning it has a compactly supported Fourier transform) and! is as well,
then the wavelet modulus maxima deÞne a complete representation off and
in this casef! = f .

Figure 31 computes the projectionf! for the signal Þrst introduced in
Figure 30. The signal is not bandlimited, so the reconstruction is not perfect.
However, Figure31(b) shows that the approximation is quite good, and the
relative error is approximately 2.5%. Figure31 reconstructs the signal using
only the top 50% of the wavelet modulus maxima coe!cients. The sharpest
signal transitions have been preserved, since they have the largest amplitude
responses, however small texture variations are removed since the wavelet
modulus maxima there have relatively small amplitudes. The resulting signal
appears to be piecewise regular.

Exercise 72. Read Section 6.2.2 ofA Wavelet Tour of Signal Processing.
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Figure 31: (a) The signalf (t). (b) Signal approximation f! (t) using the
dyadic wavelet modulus maxima shown in Figure30. (c) Approximation
recovered using only the largest 50% of the wavelet modulus maxima.
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6.3 Subsampled Wavelet Frames

Section 5.3 of A Wavelet Tour of Signal Processing.

Wavelet frames are constructed by sampling the scale parameters and the
translation parameteru. In this section we explain how. Recall that a dyadic
wavelet transform, which corresponded to semi-discrete frame, sampled the
scale parameters as s = 2 j for j %Z. In this section we use the more gen-
eral samplings = aj for j % Z with a > 1. Often one takesa = 21/Q for
Q %Z, Q - 1, which corresponds to puttingQ wavelets in every dyadic fre-
quency octave. The translation parameteru is sampled uniformly at intervals
proportional to the scaleaj with a step sizeu0:

! j,n (t) = a) j !
✓

t ) nu0aj

aj

◆

The wavelet dictionary is then:

D = { ! j,n } (j,n )%Z2

In what follows we give (without proof) necessary and su!cient conditions
for D to be a frame.

Recall that the wavelet ! is admissible if

C" =
Z + '

0

| b! (" )|2

"
d" < '

The next theorem is a partial analogue of Theorem44 for wavelet frames.

Theorem 45 (Daubechies). If D = { ! j,n } (j,n )%Z2 is a frame for L2(R), then
the frame bounds satisfy

A +
C"

u0 loge a
+ B

and
A +

1
u0

X

j %Z

| b! (aj " )|2 + B

Note that the theorem is necessary condition forD to be a frame, not
su!cient. We address su!ciency with the next theorem.
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Theorem 46 (Daubechies). Let us deÞne

' (( ) = sup
1+| #|+ a

X

j %Z

| b! (aj " )|| b! (aj " + ( )|

and

$ =
X

k%Z
k.=0


'
✓

2#k

u0

◆
'
✓

) 2#k

u0

◆�1/ 2

If u0 and a are such that

A0 =
1
u0

0

@ sup
1+| #|+ a

X

j %Z

| b! (aj " )|2 ) $

1

A > 0

and

B0 =
1
u0

0

@ sup
1+| #|+ a

X

j %Z

| b! (aj " )|2 + $

1

A < '

then D = { ! j,n } (j,n )%Z2 is a frame for L2(R). The frame boundsA and B
satisfy A - A0 and B + B0.

Notice these su!cient conditions are similar to the necessary condition of
Theorem 45, but do have the added $ term. If $ is small then A0 and B0

are close to the optimal frame boundsA and B. For a Þxed dilation step
a, the value of $ decreases asu0 decreases (which means we sample more
translations).

Recall the Mexican hat wavelet! (t) = ' //(t) where ' (t) is a Gaussian
function. Figure 32 gives the estimated frame boundsA0 and B0 computed
with Theorem 46 for a wavelet frame generated with a Mexican hat wavelet
for a = 21/Q with Q = 1 , 2, 4 and for variousu0. For Q - 2 the frame is
nearly tight so long asu0 + 1/2. On the other hand, for largeru0 the ratio
B0/A0 gets quite large, indicating that the resulting analysis and synthesis
transforms will be unstable.

Exercise 73. Read Section 5.3 ofA Wavelet Tour of Signal Processing.

Exercise 74. Read Section 5.4 ofA Wavelet Tour of Signal Processing.
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Figure 32: Estimated frame bounds for the Mexican hat wavelet.

6.4 Multiscale Directional Frames for Images

Section 5.5 of A Wavelet Tour of Signal Processing.

6.4.1 Directional Wavelet Frames

Section 5.5.1 of A Wavelet Tour of Signal Processing.

We now consider two dimensional wavelet semi-discrete frames for image
analysis. Such semi-discrete frames are constructed with wavelets have direc-
tional sensitivity, providing information on the direction of sharp transitions
such as edges and textures.

Let x = ( x1, x2) %R2. A directional wavelet ! $(x) of angle) %[0, 2#) is
a wavelet havingp directional vanishing moments along any one dimensional
line of direction ) + #/2 in the plane but does not have directional vanishing
moments along the direction) . The former condition means that:
Z + '

)'
! $(* cos) ) u sin), * sin) + u cos) )uk du = 0 , $ * %R, 0 + k < p

Such a wavelet oscillates in the direction) + #/2 but not in the direction ) .
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Let % 1 [0, #) denote the set of angles) . Typically % is a uniform
sampling:

% = { ) = 2#k/K : 0 + k < K}

The generators of a translation invariant dictionary are the dyadic dilations
of each directional wavelet:

{ ! j,$ } j %Z, $%" , ! j,$ (x) = 2 ) 2j ! $(2) j x)

Often the directional wavelets! $ are obtained by rotating a single mother
wavelet ! ; we will come back to this shortly when we deÞne two dimensional
Gabor and Morlet wavelets. For real valued directional wavelets, Theorem
44 proves that the generating wavelets generate a semi-discrete frame if and
only if there exists 0< A + B < ' such that

A +
X

j %Z

X

$%"

| b! $(2j " )|2 + B, $ " %R2 \ { (0, 0)}

If the generating wavelets! $ are complex valued analytic wavelets, then they
generate a semi-discrete frame if and only if

2A +
X

$%"

| b! $(2j " )|2 +
X

$%"

| b! $() 2j " )|2 + 2B, $ " %R2 \ { (0, 0)} (67)

When the above semi-discrete frame conditions holds, the dyadic direc-
tional wavelet transform is a mapW : L2(R2) , `2(L2(R2)) deÞned as:

Wf = { f # ø! j,$ (u) : j %Z, ) %%, u %R2} , ø! j,$ (x) = ! #
j,$ () x)

A wavelet ! u,j,$ (x) = ! j,$ (x ) u) has support dilated by 2j , located in a
neighborhood ofu and oscillates in the direction) + #/2. If f (x) is constant
over the support of ! j,$ (x ) u) along lines of direction) + #/2, then f #
ø! j,$ (u) = 0 because of its directional vanishing moments. In particular, the
wavelet coe!cient vanishes in the neighborhood of an edge having a tangent
in the direction of ) + #/2. If the edge angle deviates from) + #/2, then
it produces large amplitude coe!cients, with a maximum typically when the
edge has direction) . Figure 33 illustrates the idea.

Exercise 75. Let h be a low pass Þlter withbh(0) =
(

2 and let %%L
2(R)

be a scaling function with the following Fourier transform:

b%(" ) =
1

(
2
bh("/ 2)b%("/ 2)

144



Spring 2018 Math 994: Comp. Harmonic Analysis

Figure 33: A cartoon image of a disk, with a regular edge. When the wavelet
direction ) is orthogonal to the tangent of the edge, the coe!cients vanish
as indicated by the black wavelet response () 2). When the wavelet direction
) aligns with the tangent of the curve (as on the left with) 1), the wavelet
coe!cients have large amplitude. When the tangent of the curve is not
aligned with the wavelet, but is not orthogonal either (as in) 3 and ) /

3),
wavelet coe!cients may have non-negligible amplitude but generally not as
large as the) 1 coe!cients.

Let g be a high pass Þlter withbg(0) = 0 and let ! be a wavelet with Fourier
transform:

b! (" ) =
1

(
2
bg("/ 2)b%("/ 2)

Prove that if there exist 0< A + B < ' such that

A(2 ) | bh(" )|2) + | bg(" )|2 + B(2 ) | bh(" )|2

then the family { ! j } j %Z are the generators of a semi-discrete frame.

Exercise 76. [20 points] Using your code from previous exercises compute
the dyadic wavelet transform of the signal in Figure13. Compute the wavelet
modulus maxima as well. Implement a dual synthesis projection (however
you like) and computef! , i.e., the signal synthesized from only the wavelet
modulus maxima coe!cients. Threshold the wavelet modulus maxima coef-
Þcients and synthesize a signal only from the largest ones. Turn in plots of
the wavelet coe!cients, the wavelet modulus maxima, and the synthesized
signals. Explain your results.
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