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The next theorem generalizes Theorem 2.15 by relating the decay of the Fourier transform
of f(t) to the ↵ regularity of f .

Theorem 5.3. Suppose that f 2 L1(R). If
Z

R
| bf(!)|(1 + |!|

↵) d! < +1 (34)

then f 2 C↵(R).

Proof. Equation (34) implies that bf 2 L1(R), and so the Fourier inversion formula (2) holds.
We use it to prove f 2 L1(R):

|f(t)| 
1

2⇡

����
Z

R
bf(!)ei!t d!

���� 
1

2⇡

Z

R
| bf(!)| d!


1

2⇡

Z

R
| bf(!)|(1 + |!|

↵) d! < 1

Now suppose that 0 < ↵ < 1 and show that f 2 Ċ↵(R). To do so we need to show there
exists K > 0 such that

|f(t)� f(v)|  K|t� v|
↵
, 8 t, v 2 R

By the Fourier inversion formula (2) we have that

f(t) =
1

2⇡

Z

R
bf(!)ei!t d!

It follows that
|f(t)� f(v)|

|t� v|↵


1

2⇡
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R
| bf(!)| |e

i!t
� e

i!v
|

|t� v|↵
d!

For |!| � |t� v|
�1,

|e
i!t

� e
i!v

|

|t� v|↵


2

|t� v|↵
 2|!|↵ (35)

On the other hand, for |!|  |t � v|
�1, we note that if a function h 2 C1(R) with bounded

derivative then
|h(t)� h(v)|  K|t� v|, K = sup

u2R
|h

0(u)|
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Note that e! 2 C1(R), where e!(t) = e
i!t, and |e

0
!(t)| = |!|. Therefore,

|e
i!t

� e
i!v

|

|t� v|↵


|!||t� v|

|t� v|↵
= |!||t� v|

1�↵
 |!||!|

↵�1 = |!|
↵ (36)

Combining (35) and (36), we obtain

|f(t)� f(v)|

|t� v|↵


1

2⇡

Z

R
2| bf(!)||!|↵ d! = K

Equation (34) ensures that K < 1, and so f 2 C↵(R).
We now extend the result to ↵ > 1, ↵ /2 Z. Let n = b↵c. Theorem 2.15 proves that

f 2 Cn(R). Recall that d
f (k)(!) = (i!)k bf(!). Equation (34) gives:

Z

R
|
d
f (k)(!)|(1 + |!|

↵�n) d! =

Z

R
| bf(!)|(|!|k + |!|

↵�n+k) d! < 1

Thus by our work above, we have that f
(k)

2 C↵�n(R) for k  n, which proves that
f 2 C↵(R).

As we have discussed previously for Cn-smooth functions, the decay of the Fourier trans-
form can only indicate the minimum regularity of f(t). Wavelet transforms characterize
both the global and pointwise regularity of functions.

Exercise 45. Read Section 6.1.1 of A Wavelet Tour of Signal Processing.

Exercise 46. Consider the function

f(t) = t sin

✓
1

t

◆

(a) Prove that f(t) is pointwise Lipschitz 1 for all t 2 (�1, 1).

(b) Prove that f 2 C↵(�1, 1) only for ↵  1/2 (Hint: Consider the points tn = (n +
1/2)�1

⇡
�1).

5.1.2 Wavelet Vanishing Moments

Section 6.1.2 of A Wavelet Tour of Signal Processing.

We assume throughout that  (t) is a real valued wavelet. A wavelet  has n vanishing
moments if Z

R
t
k
 (t) dt = 0, 8 0  k < n

A wavelet  with n vanishing moments is orthogonal to polynomials of degree n� 1.
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Suppose now that f is Lipschitz ↵ < n at v, so that

f(t) = pv(t) + "v(t)

with pv(t) a polynomial of degree n� 1 and

|"v(t)|  K|t� v|
↵

We have that

Wpv(u, s) =

Z

R
pv(t)

1
p
s
 

✓
t� u

s

◆
dt =

p
s

Z

R
pv(st

0 + u) (t0) dt0 = 0

Therefore,
Wf(u, s) = Wpv(u, s) +W"v(u, s) = W"v(u, s)

Thus a wavelet transform with n vanishing moments analyzes f(t) around t = v by ignoring
the polynomial approximation of f(t) and focusing on the residual "v(t).

A wavelet  has fast decay if

8m 2 N, 9Cm such that | (t)| 
Cm

1 + |t|m
, 8 t 2 R

The following theorem shows that a wavelet  with fast decay and n vanishing moments is
the n

th derivative of a function ✓(t). The resulting wavelet transform is thus a multiscale
differential operator.

Theorem 5.4. A wavelet  (t) with fast decay has n vanishing moments if and only if there
exists ✓(t) with a fast decay such that

 (t) = (�1)n✓(n)(t)

Consequently,
Wf(u, s) = s

n d
n

dun
(f ⇤ ✓s)(u)

where ✓s(t) = s
�1/2

✓(�t/s). Furthermore,  has no more than n vanishing moments if and
only if Z

R
✓(t) dt 6= 0

Proof. Suppose that  has fast decay and n vanishing moments. Since  has fast decay we
must have that b 2 C1(R); this follows from Theorem 2.15 by setting f = b . Thus we can
differentiate b (!) as many times as we like.

Recall that the Fourier transform of h(t) = (�it)k (t) is bh(!) = b (k)(!). It follows that

b (k)(0) =

Z

R
(�it)k (t) dt = (�i)k

Z

R
t
k
 (t) dt = 0, 8 0  k < n
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We can therefore write b as
b (!) = (�i!)nb✓(!)

where b✓ 2 L1(R) since b 2 L1(R). It follows that

 (t) = (�1)n✓(n)(t)

The fast decay of ✓(t) is proved with an induction on n. For n = 1,

b (!) = �i!b✓(!) =)  (t) = �✓
0(t)

It follows that
✓(t) = �

Z t

�1
 (u) du

Thus, using the fast decay of  (t),

|✓(t)| 

Z t

�1
| (u)| du 

Z t

�1

Cm

1 + |u|m
du 

C
0
m�1

1 + |t|m�1
, 8m � 2

Now make the inductive hypothesis that if  (t) is any wavelet with fast decay and

b (!) = (�i!)kb⇥(!), 1  k  n

then ⇥(t) has fast decay. Consider now a wavelet  with fast decay that has n+1 vanishing
moments, so that b (!) = (�i!)n+1b✓(!). Define

b⇥(!) = �i!b✓(!) =) b (!) = (�i!)nb⇥(!)

By the inductive hypothesis, ⇥(t) has fast decay. But then since b⇥(!) = �i!b✓(!), we can
apply the inductive hypothesis again to conclude that ✓(t) has fast decay.

Conversely, suppose that  (t) = (�1)n✓(n)(t) and ✓(t) has fast decay. Because of the fast
decay,

|b✓(!)| 
Z

R
|✓(t)| dt 

Z

R

Cm

1 + |t|m
dt < +1, m � 2

Thus b✓ 2 L1(R). The Fourier transform of  (t) is

b (!) = (�i!)nb✓(!)

It follows that b (k)(0) = 0 for k < n. But then
Z

R
t
k
 (t) dt = i

k b (k)(0) = 0, 0  k < n

Thus  (t) has n vanishing moments.
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To test whether  (t) has more than n vanishing moments, we compute:
Z

R
t
n
 (t) dt = i

n b (n)(0) = (�i)nn!b✓(0)

Clearly then  has no more than n vanishing moments if and only if

b✓(0) =
Z

R
✓(t) dt 6= 0

Recall the wavelet transform can be written as

Wf(u, s) = f ⇤  s(u)

where
 s(t) =

1
p
s
 

✓
�t

s

◆
=

(�1)n
p
s
✓
(n)

✓
�
t

s

◆
= (�1)n✓

(n)
s (t)

A simple calculation also shows that

d
n

dtn
✓s(t) =

1

sn

(�1)n
p
s
✓
(n)

✓
�
t

s

◆
=

(�1)n

sn
✓
(n)
s (t) =

 s(t)

sn

Therefore  s(t) = s
n(dn/dtn)✓s(t). We then have:

Wf(u, s) = f ⇤  s(u) = s
n
f ⇤ ✓

(n)
s (u) = s

n d
n

dun
(f ⇤ ✓)(u)

If K = b✓(0) 6= 0, then the convolution f ⇤✓s(t) can be interpreted as a weighted average of
f with a kernel dilated by s. Theorem 5.4 proves that Wf(u, s) is an n

th order derivative of
an averaging of f over a domain proportional to s and centered at u. Figure plots Wf(u, s)
calculated with  (t) = �✓

0(t), where ✓(t) is a Gaussian. Notice how the sign and magnitude
of the wavelet coefficients corresponds to the derivative of f averaged over a window of size
proportional to s. Compare to Figure 19, which computed Wf(u, s) with the Mexican hat
wavelet  (t) = ✓

00(t) (✓ again a Gaussian).
Since ✓(t) has fast decay, once can verify that for any f that is continuous at u,

lim
s!0

f ⇤
1
p
s
✓s(u) = Kf(u)

In the sense of distributions, we write

lim
s!0

1
p
s
✓s(t) = K�(t)
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Figure 22: Wavelet transform Wf(u, s) calculated with  = �✓
0, where ✓ is a Gaussian, for

the signal f(t) shown in (a). Position parameter u and scale s vary, respectively, along the
horizontal and vertical axes. (b) Black, gray, and white points correspond to positive, zero,
and negative wavelet coefficients. Singularities create large-amplitude coefficients in their
cone of influence.
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If f is n times continuously differentiable in the neighborhood of u, then using Theorem 5.4,

lim
s!0

Wf(u, s)

sn+1/2
= lim

s!0

1
p
s

d
n

dtn
(f ⇤ ✓s)(u) = lim

s!0
f
(n)

⇤
1
p
s
✓s(u) = Kf

(n)(u) (37)

In particular, if f 2 Cn(R), then |Wf(u, s)| = O(sn+1/2). This gives us a first relation
between the decay of |Wf(u, s)| as s ! 0 and the uniform regularity of f . Next we push
harder and obtain finer relations.

Exercise 47. Read Section 6.1.2 of A Wavelet Tour of Signal Processing.
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