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5.3 Stochastic Processes
References for this section are:

1. Wavelet Tour of Signal Processing [1, Section 6.4]: This covers multi-fractals, of which
fractional Brownian motion is an example. We will cover fractional Brownian motion,
but not general multi-fractals.

2. Stochastic Calculus for Finance II [6]: Chapter 1 and 2 are good references for the
basics of measure theoretic probability. Chapter 3 is a good reference for constructing
the Wiener process and understanding its properties.

3. Introduction to random fields and scale invariance [7]: Some additional good informa-
tion. I am getting the plots from these notes. Even though the focus is on random
fields (that is, stochastic processes in which the index variable t 2 Rd), there is good
info on stochastic processes as well.

The right hand side of the signal in Figure 23 can be modeled as a stochastic process.
Many phenomena of interest can be modeled as stochastic processes that are singular al-
most everywhere, e.g., financial instruments (stocks), heart records, and textures. Knowing
the distribution of singularities is important for analyzing the properties of such processes.
However, pointwise measurements are not possible because the singularities are not isolated.
If the stochastic process is also self-similar, though, wavelet transforms and in particular
wavelet zoom through the layers of self-similarity can extract information about the distri-
bution of singularities. We illustrate this concept on fractional Brownian motions, which are
statistically singular almost everywhere with the same type of singularity, specified by its
Hurst parameter H.

Recall a probability space consists of three things: (i) the set of all outcomes ⌦; (ii) the
set of all events F , which is a set of sets, and in which each set A 2 F is a subset A ✓ ⌦.
We will require that F be a �-algebra, meaning that (a) ; 2 F ; (b) if A 2 F , then the
complement of A, denoted Ac, is also in F ; and (c) if A1, A2, . . . 2 F then [i�1Ai 2 F . And
finally (iii) a probability measure P : F ! [0, 1] that assigns each A 2 F a probability P(A).
The probability measure must satisfy (a) P(⌦) = 1; and (b) if A1, A2, . . . 2 F are disjoint,
then
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The Borel �-algebra B on R is the smallest �-algebra on R that contains all intervals.
Now we can define a random variable.

Definition 5.12. We say X is a random variable defined on the probability space (⌦,F ,P)
if

X : ⌦ ! R
and

8B 2 B , {X 2 B} = {! 2 ⌦ : X(!) 2 B} 2 F

Definition 5.13. The distribution of a random variable X is the probability measure µX :
B ! [0, 1] defined as

µX(B) = P(X 2 B)

Definition 5.14. A real valued stochastic process X = (X(t))t2R is a family of random
variables

X(t) : ⌦ ! R
defined on a probability space (⌦,F ,P).

We will assume that all of our stochastic processes are real valued.

Definition 5.15. The distribution of a stochastic process X is given by all its finite dimen-
sional distributions, that is, the distribution of all real random vectors

(X(t1), . . . , X(td)) , 8 d � 1 , 8 t1, t2, . . . , td

Definition 5.16. A stochastic process X is a second order process if E[X(t)2] < +1 for all
t 2 R. In this case we may define its:

• Mean function
mX(t) = E[X(t)] =

Z

⌦

X(t)(!) dP(!)

The process is centered if mX(t) = 0 for all t 2 R. Also note that, unfortunately,
the standard notation in harmonic analysis for the frequency variable is !, but the
standard notation in probability for an outcome is also !. Hopefully the context will
always be clear and things will not be too confusing.

• Covariance function

CovX(s, t) = Cov(X(s), X(t)) = E[(X(s)� E[X(s)])(X(t)� E[X(t)])]

Note that the variance is given by

VarX(t) = Var(X(t)) = Cov(X(t), X(t)) = E[(X(t)� [X(t)])2]

Definition 5.17. A stochastic process X is Gaussian if for all t1, t2, . . . , td the probability
distribution of the random vector (X(t1), . . . , X(td)) 2 Rd is normally distributed.
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Figure 28: A sample path (realization) of the Wiener process (Brownian motion).

From the properties of the normal distribution it follows that the probability distribution
of a Gaussian process is entirely determined by the mean function mX(t) and the covariance
function CovX(s, t). A very useful and famous example of a Gaussian process is the Wiener
process (also referred to as Brownian motion), which has wide use in physics and finance and
other fields. Let us denote it by W (t). The Wiener process satisfies the following conditions:

• W is a Gaussian process with W (0) = 0

• W (t) is continous in t

• mW (t) = E[W (t)] = 0 for all t 2 R

• CovW (s, t) = 1
2(|s|+ |t|� |t� s|) = min(|s|, |t|) for all s, t 2 R

Figure 28 plots a sample path (that is, a realization) of the Wiener process.
Let us describe now how to construct the Wiener process. It will give us some intuition

about stochastic processes in general. The main idea is that we are going to construct
a random walk out of an infinite sequence of coin flips. We will then let these coin flips
happen with increasing frequency, until in the limit there is no time between the flips. Let
us now be more precise.

First consider the experiment of flipping a coin once. There are two possible outcomes,
heads or tails, and our probability space is the following:

⌦1 = {H, T}

F1 = {;, {H}, {T},⌦2}

P1(H) = p

P1(T ) = q = 1� p
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Note that P1(;) = 0 and P1(⌦1) = 1 by the properties of probability measures. We define a
random variable on (⌦1,F1,P1) that takes the value +1 for the outcome heads, and �1 for
the outcome tails:

Z(!) =

⇢
+1 ! = H
�1 ! = T

(51)

Now let us consider the experiment of flipping a coin infinitely many times, in which all
the flips are independent. In this case our set of outcomes is:

⌦1 = all infinite sequences of heads (H) and tails (T)

This outcome space is uncountably infinite, so more care is needed in defining its �-algebra
F1 and its probability measure P1. We will do so by specifying the probability of all events
that are based on a finite number of coin tosses. Note that an outcome ! 2 ⌦1 can be
written as:

! = !1!2!3 . . .

where each !i 2 {H, T}. Now let us build up F1. We know we have to put ;,⌦1 2 F1
with P1(;) = 0 and P1(⌦1) = 1. Now let us also add in the two events:

AH = {! 2 ⌦1 : !1 = H} = first coin is a heads
AT = {! 2 ⌦1 : !1 = T} = first coin is a tails

Based on the single coin toss probability space, we set

P1(AH) = p and P1(AT ) = q

Remember that if A 2 F then Ac
2 F , but in this case Ac

H
= AT so we are okay. Also note

the union is AT [AH = ⌦1. Now we add in events based on the first two coin tosses, where
the definitions of these events should be clear:

AHH , AHT , ATH , ATT

We set the probabilities accordingly:

P1(AHH) = p2

P1(AHT ) = pq

P1(ATH) = qp

P1(ATT ) = q2

Now we have to take these four new events, and also consider their compliments and unions,
and also add those events into F1, and specify their probabilities. This can be done. Then
we continue by considering events based on the first three coin tosses, then the first four
coins tosses, and so on, adding everything into F1 along with unions and compliments, and
specifying probabilities. We do this for all events which are based on the first k coin tosses,
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for all k 2 N. Then we complete F1 by adding in the minimal number of all other events
required to have a �-algebra.

Now we define the random walk, which is a discrete stochastic process defined over the
probability space (⌦1,F1,P1). We set p = q = 1/2, so the coin if fair, which will make the
walk unbiased. Let M = (M(n))n2N0 be the random walk, where N0 = {0, 1, 2, . . . , }, and
where each M(n) is a random variable on (⌦1,F1,P1). Define

M(0)(!) = 0 , 8! 2 ⌦1

That is to say, our random walk will always start at zero. For the remaining steps, recall
that ! = !1!2!3 . . . is an outcome in ⌦1. Let Zi(!i) be defined as in (51) for each coin flip
!i. Define M(n) for every n 2 N as

M(n)(!) =
nX

i=1

Zi(!i) , ! = !1!2!3 . . .

The Wiener process on (Brownian motion) [0,1) is obtained by rescaling the random
walk M . Define W (m) = (W (m)(t))t2[0,1) as

W (m)(t) =

⇢
(1/

p
m)M(mt) mt 2 N0

(1/
p
m)[(dmte �mt)M(bmtc) + (mt� bmtc)M(dmte)] mt /2 N0

We then obtain W = (W (t))t2[0,1) by taking m ! 1, that is

W (t) = lim
m!1

W (m)(t)

To obtain a Wiener process on R, we take two independent Wiener processes W1 =
(W1(t))t2[0,1) and W2 = (W2(t))t2[0,1) and we create one on R by setting:

W (t) =

⇢
W1(t) t � 0
W2(�t) t < 0

The Wiener process inherits the properties of the random walk. In particular, W (0) = 0
and for all t0 < t1 < t2 < · · · tk the increments

W (t1)�W (t0) , W (t2)�W (t1) , . . . , W (tk)�W (tk�1)

are independent and each increment is normally distributed with

E[W (ti+1)�W (ti)] = 0

Var(W (ti+1)�W (ti)) = ti+1 � ti

The other properties in our original definition also follow from this construction.
Let us now consider another important class of stochastic processes.
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Definition 5.18. A stochastic process X is stationary if, for all u 2 R, the stochastic process
(X(t+ u))t2R has the same distribution as X = (X(t))t2R.

The Wiener process is not stationary, but its increments are. We will come back to this
point later. For now, we remark that stationary processes are translation invariant since
their distribution does not change with a temporal translation by u. Their statistics inherit
this invariance, as the following proposition illustrates.

Proposition 5.19. If a second order stochastic process X is stationary, then

• Its mean function is constant, that is mX(t) = mX for some constant value mX . We
will sometimes write mX = E[X].

• Its covariance function only depends on t� s, that is

CovX(s, t) = RX(t� s)

for some even function RX : R ! R. The function RX also satisfies RX(0) � 0 and
|RX(⌧)|  RX(0) for all ⌧ 2 R.

Proof. By the stationarity of X we have X(t)
d
= X(0) (that is, X(t) and X(0) have the

same distribution) and so mX(t) = E[X(t)] = E[X(0)] = mX(0) for all t 2 R. For the
covariance set RX(⌧) = CovX(0, ⌧). For any s 2 R we have, again by the stationarity of X,
that (X(s), X(⌧ + s))

d
= (X(0), X(⌧)) and so CovX(s, ⌧ + s) = Cov(0, ⌧) = RX(⌧). Hence

for ⌧ = t� s we have CovX(s, t) = RX(t� s). Since (X(0), X(⌧))
d
= (X(�⌧), X(0)) we have

RX(⌧) = CovX(0, ⌧) = CovX(�⌧, 0) = CovX(0,�⌧) = RX(�⌧)

and so RX is even. We also have

RX(0) = CovX(0, 0) = Var(X(0)) � 0

Finally, using the Cauchy-Schwarz inequality and the stationarity of X:

|RX(⌧)| = |Cov(X(0), X(⌧))| 
p
Var(X(0))Var(X(⌧))

=
p
Var(X(0))Var(X(0))

= Var(X(0))

= RX(0)

Examples of stationary Gaussian processes are given by Ornstein Uhlenbeck processes,
which are defined for any ✓ > 0 as:

X(t) = e�✓tW (e2✓t)
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Figure 29: Sample paths of the Ornstein Uhlenbeck process for different values of ✓.

where W is the Wiener process. It is clear E[X(t)] = 0 for all t 2 R. Also a short calculation
shows its covariance is

CovX(s, t) = e�✓|t�s|

and thus only depends on t� s. Figure 29 plots Ornstein Uhlenbeck processes for different
values of ✓. Using the previous proposition, we can define the power spectral density (power
spectrum) of a stationary process X.
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